若函數(shù)f(x)=px+q,f(3)=5,f(5)=9,則f(1)的值為
1
1
分析:利用待定系數(shù)法求出函數(shù)的解析式,進(jìn)而即可求出函數(shù)值.
解答:解:∵函數(shù)f(x)=px+q,f(3)=5,f(5)=9,
3p+q=5
5p+q=9
,解得
p=2
q=-1
,
∴f(x)=2x-1.
∴f(1)=2×1-1=1.
故答案為1.
點(diǎn)評(píng):熟練掌握待定系數(shù)法是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對(duì)于任意n?N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=
px+1
x+1
確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)在(1)條件下,記
n
1
x1
+
1
x2
+…
1
xn
為正數(shù)數(shù)列{xn}的調(diào)和平均數(shù),若dn=
2
an+1
-1
,Sn為數(shù)列{dn}的前n項(xiàng)之和,Hn為數(shù)列{Sn}的調(diào)和平均數(shù),求
lim
n→∞
=
Hn
n
;
(3)已知正數(shù)數(shù)列{cn}的前n項(xiàng)之和Tn=
1
2
(Cn+
n
Cn
)
.求Tn表達(dá)式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=px-
px
-2lnx

(1)若p=2.求曲線f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)若函數(shù)f(x)在其定義域內(nèi)為增函數(shù),求正實(shí)數(shù)p的取值范圍;
(3)若?x0∈[1,e],使得f(x0)>2成立,求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

若函數(shù)f(x)=px+q,f(3)=5,f(5)=9,則f(1)的值為________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

若函數(shù)f(x)=px+q,f(3)=5,f(5)=9,則f(1)的值為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案