已知⊙C1(x-2)2+(y+3)2=25,過點A(-1,0)的弦中,弦長的最大值為M,最小值為m,則M-m=
 
考點:直線與圓相交的性質(zhì)
專題:直線與圓
分析:由圓的知識可得過點A的最大弦長為直徑,最短的為與該直徑垂直的弦長,幾何知識易得.
解答: 解:∵⊙C1(x-2)2+(y+3)2=25,
∴圓心為(2,-3),半徑r=5,
由圓的知識可得過點A的最大弦長為直徑,最短的為與該直徑垂直的弦長,
∴M=10,AC1=
(-1-2)2+(0+3)2
=3
2

∴m=2
52-(3
2
)2
=2
13
,
∴M-m=10-2
13

故答案為:10-2
13
點評:本題考查直線與圓的位置關(guān)系,涉及最大弦長和最短弦長問題,屬基礎題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

設線段AB的兩個端點A、B分別在x軸、y軸上滑動,且|AB|=4,點M是線段AB的中點,則點M的軌跡方程是( 。
A、
x2
9
+
y2
4
=1
B、x2+y2=4
C、x2-y2=4
D、
y2
25
+
x2
9
=1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=ex
(1)求函數(shù)y=f(x)-x的單調(diào)區(qū)間;
(2)證明:函數(shù)y=f(x)和y=g(x)在公共定義域內(nèi),g(x)-f(x)>2.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=2,|
b
|=4,
a
b
的夾角為45°,則
a
+
b
b
方向上的投影為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)=log4x-|x-4|的零點的個數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設函數(shù)f(x)=lnx+
1
2
x-a(a∈R),若存在b∈[1,e],(e為自然對數(shù)的底數(shù)),使得f(f(b))=b,則實數(shù)a的取值范圍是( 。
A、[-
1
2
,1-
e
2
]
B、[1-
e
2
,ln2-1]
C、[-
1
2
,ln2-1]
D、[-
1
2
,0]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

化簡:cosα
1-sinα
1+sinα
+sinα
1-cosα
1+cosα

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如果圓x2+y2+dx+ey+f=0(d2+e2-4f>0)關(guān)于直線y=2x對稱,那么
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若n為大于1的自然數(shù),求證:
1
n+1
+
1
n+2
+…+
1
2n
13
24

查看答案和解析>>

同步練習冊答案