已知數(shù)列{an}中,Sn是它的前n項(xiàng)和,并且Sn+1=4an+2,al=1.

(1)

設(shè)bn=an+1-2an,求證:{bn}是等比數(shù)列

(2)

設(shè)cn,求證:數(shù)列{cn}是等差數(shù)列

(3)

求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)的和

答案:
解析:

(1)

  解析:由“a1+a2=4a1+2,得a2-3a1+2=5,∴b1=a2-2a1=5-2=3.

  又Sn+1=4an+2,Sn=4an+1+2.兩式相減得an+1=4an-4an+1,∴an+1-2an=2(an-2a+1),

  ∴bn=2bn+1,∴b1=3,q=2.

  ∴bn=3·2n+1,∴{bn}是等比數(shù)列.

(2)

  由an+l-2an=3·2n+1,得cn+1-cnan+lan(an+1-2an)=·3·2n+1,

  ∴{cn}是等差數(shù)列,且c1a1,d=

  ∴cn=c1+(n-1)d,∴cnn-

(3)

  由cn,∴an=2n·cn

  ∴aπn·2n·2n而Sn=4an+1+2(已知),∴Sn=2n+1(3n-4)+2.

  點(diǎn)評(píng):本題紿出了由已知數(shù)列構(gòu)造成新的等差、等比數(shù)列的方法.在這方面進(jìn)行解題訓(xùn)練是十分必要的.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=a,an=(n≥2),寫出這個(gè)數(shù)列的前5項(xiàng),并由此寫出這個(gè)數(shù)列的通項(xiàng)公式及第100項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,a1=,a2=,數(shù)列{bn}是公差為-1的等差數(shù)列,其中bn=log2(an+1-),{cn}是公比為的等比數(shù)列,其中cn=an+1-.試求數(shù)列{an}的通項(xiàng)公式及前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,an=(n∈N*),則在數(shù)列{an}的前50項(xiàng)中最小項(xiàng)和最大項(xiàng)分別是(    )

A.a(chǎn)1 ,a50               B.a(chǎn)1,a8                 C.a(chǎn)8,a9                D.a(chǎn)9,a50

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,an∈(0,),an=+·an-12,其中n≥2,n∈N*,求證:對(duì)一切自然數(shù)n都有an<an+1成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}中,, ,

(1)設(shè)計(jì)一個(gè)包含循環(huán)結(jié)構(gòu)的框圖,表示求算法,并寫出相應(yīng)的算法語(yǔ)句.

(2)設(shè)計(jì)框圖,表示求數(shù)列{an}的前100項(xiàng)和S100的算法.

查看答案和解析>>

同步練習(xí)冊(cè)答案