已知x,y滿足約束條件,則目標函數(shù)z=-2x+y的最大值是   
【答案】分析:作出題中不等式組表示的平面區(qū)域,得如圖的陰影部分,即圓x2+y2=4的上半圓且位于直線y=x+2下方的平面區(qū)域.再將目標函數(shù)z=-2x+y對應的直線進行平移,可得當l經過點A時,目標函數(shù)z=-2x+y有最大值.
解答:解:作出不等式組表示的平面區(qū)域,
得到如圖的陰影部分,即圓x2+y2=4的上半圓,
且位于直線y=x+2下方的平面區(qū)域
其中A(-2,0),B(0,2),C(2,0)
設z=F(x,y)=-2x+y,將直線l:z=-2x+y進行平移,
得當l經過點A時,目標函數(shù)z=-2x+y有最大值
∴zmax=F(-2,0)=4
故答案為:4
點評:本題給出二元一次不等式組,求目標函數(shù)z=-2x+y的最大值,著重考查了二元一次不等式組表示的平面區(qū)域、簡單的線性規(guī)劃和直線與圓的位置關系等知識,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知x,y 滿足約束條
x-2y≤24
3x+2y≥36
y≥1
則z=2x-3y的最大值
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

過點P(a,b)作兩條直線l1,l2,斜率分別為1,-1,已知l1與圓O1:(x+2)2+(y-2)2=2交于不同的兩點A,B,l2與圓O2:(x-3)2+(y-4)2=2交于不同的兩點C,D,且|AB|=|CD|.
(Ⅰ)求:a,b所滿足的約束條件;
(Ⅱ)求:
a2-b2a2+b2
的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2013屆廣東省高二文科數(shù)學競賽試卷(解析版) 題型:選擇題

已知向量,且,若變量x,y滿足約束條,則z的最大值為                            

A.1             B.2         C.3            D.4

 

查看答案和解析>>

科目:高中數(shù)學 來源:2008-2009學年河北省唐山市高二(上)第一次質量檢測數(shù)學試卷(解析版) 題型:填空題

已知x,y 滿足約束條則z=2x-3y的最大值   

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知x,y滿足約束條的最小值是                                 

A.9                            B.20                          C.                        D.

查看答案和解析>>

同步練習冊答案