【題目】已知函數(shù)

1)函數(shù)內(nèi)有兩個不同零點,求的取值范圍;

2)在第(1)問的條件下判斷當時,曲線是否位于軸下方,并說明理由.

【答案】1;(2)曲線位于軸下方,理由詳見解析.

【解析】

1)將的解析式代入,結(jié)合零點定理并分離參數(shù)可得,求得導函數(shù)后根據(jù)函數(shù)的單調(diào)性與極限值畫出函數(shù)圖像示意圖,即可求得的取值范圍;

2)將函數(shù)變形,結(jié)合(1)中的取值范圍,可知,而當,即可說明曲線位于軸下方.

1內(nèi)有兩個不同零點

,

,

,令可解得,

,,單調(diào)遞減;

,單調(diào)遞增

所以取得極小值,

因為,且,

所以的圖像大致如下圖所示:

所以當時,方程有兩解,,

所以

2

由(1)知當,,所以

,,所以

,

所以當時曲線位于軸下方.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱的所有棱長都是2,分別是的中點.

1)求證:平面;

2)求直線與平面所成角的正弦值;

3)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,正三棱柱的底面邊長為2 是側(cè)棱的中點.

1證明:平面平面;

2若平面與平面所成銳角的大小為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中,四邊形是菱形,,,E上一點,且,設.

1)證明:平面

2)若,,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某部門在上班高峰時段對甲、乙兩座地鐵站各隨機抽取了50名乘客,統(tǒng)計其乘車等待時間(指乘客從進站口到乘上車的時間,單位:分鐘)將統(tǒng)計數(shù)據(jù)按,,…,分組,制成頻率分布直方圖如圖所示:

1)求a的值;

2)記A表示事件“在上班高峰時段某乘客在甲站乘車等待時間少于20分鐘”試估計A的概率;

3)假設同組中的每個數(shù)據(jù)用該組區(qū)間左端點值來估計,記在上班高峰時段甲、乙兩站各抽取的50名乘客乘車的平均等待時間分別為,求的值,并直接寫出的大小關系.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓

(1)若橢圓的離心率為,求的值;

(2)若過點任作一條直線與橢圓交于不同的兩點,在軸上是否存在點,使得, 若存在,求出點的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為實現(xiàn)2020年全面建設小康社會,某地進行產(chǎn)業(yè)的升級改造.經(jīng)市場調(diào)研和科學研判,準備大規(guī)模生產(chǎn)某高科技產(chǎn)品的一個核心部件,目前只有甲、乙兩種設備可以獨立生產(chǎn)該部件.如圖是從甲設備生產(chǎn)的部件中隨機抽取400件,對其核心部件的尺寸x,進行統(tǒng)計整理的頻率分布直方圖.

根據(jù)行業(yè)質(zhì)量標準規(guī)定,該核心部件尺寸x滿足:|x12|≤1為一級品,1<|x12|≤2為二級品,|x12|>2為三級品.

(Ⅰ)現(xiàn)根據(jù)頻率分布直方圖中的分組,用分層抽樣的方法先從這400件樣本中抽取40件產(chǎn)品,再從所抽取的40件產(chǎn)品中,抽取2件尺寸x∈[12,15]的產(chǎn)品,記ξ為這2件產(chǎn)品中尺寸x∈[14,15]的產(chǎn)品個數(shù),求ξ的分布列和數(shù)學期望;

(Ⅱ)將甲設備生產(chǎn)的產(chǎn)品成箱包裝出售時,需要進行檢驗.已知每箱有100件產(chǎn)品,每件產(chǎn)品的檢驗費用為50.檢驗規(guī)定:若檢驗出三級品需更換為一級或二級品;若不檢驗,讓三級品進入買家,廠家需向買家每件支付200元補償.現(xiàn)從一箱產(chǎn)品中隨機抽檢了10件,結(jié)果發(fā)現(xiàn)有1件三級品.若將甲設備的樣本頻率作為總體的慨率,以廠家支付費用作為決策依據(jù),問是否對該箱中剩余產(chǎn)品進行一一檢驗?請說明理由;

(Ⅲ)為加大升級力度,廠家需增購設備.已知這種產(chǎn)品的利潤如下:一級品的利潤為500元/件;二級品的利潤為400元/件;三級品的利潤為200元/件.乙種設備產(chǎn)品中一、二、三級品的概率分別是,,.若將甲設備的樣本頻率作為總體的概率,以廠家的利潤作為決策依據(jù).應選購哪種設備?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】橢圓規(guī)是用來畫橢圓的一種器械,它的構造如圖所示,在一個十字形的金屬板上有兩條互相垂直的導槽,在直尺上有兩個固定的滑塊A,B,它們可分別在縱槽和橫槽中滑動,在直尺上的點M處用套管裝上鉛筆,使直尺轉(zhuǎn)動一周,則點M的軌跡C是一個橢圓,其中|MA|2,|MB|1,如圖,以兩條導槽的交點為原點O,橫槽所在直線為x軸,建立直角坐標系.

1)將以射線Bx為始邊,射線BM為終邊的角xBM記為φ0≤φ),用表示點M的坐標,并求出C的普通方程;

2)已知過C的左焦點F,且傾斜角為α0≤α)的直線l1C交于D,E兩點,過點F且垂直于l1的直線l2C交于G,H兩點.|GH|,依次成等差數(shù)列時,求直線l2的普通方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,P為直線上的動點,動點Q滿足,且原點O在以為直徑的圓上.記動點Q的軌跡為曲線C

1)求曲線C的方程:

2)過點的直線與曲線C交于AB兩點,點D(異于A,B)在C上,直線,分別與x軸交于點M,N,且,求面積的最小值.

查看答案和解析>>

同步練習冊答案