已知函數(shù)f(x)是定義在R上的偶函數(shù),且當(dāng)x>0時,f(x)=ln(x+1),則函數(shù)f(x)的大致圖象為


  1. A.
  2. B.
  3. C.
  4. D.
C
分析:根據(jù)題意,先通過對稱點的方法求出函數(shù)在區(qū)間(-∞,0)上的表達式,從而得出函數(shù)完整的表達式,然后利用對數(shù)函數(shù)y=lnx圖象向左平移一個單位的圖象與原函數(shù)在(0,+∞)上圖象進行對照,得到正確的選項.
解答:∵當(dāng)x>0時,f(x)=ln(x+1),
∴設(shè)x<0,得-x>0,f(-x)=ln(-x+1)
又∵函數(shù)f(x)是定義在R上的偶函數(shù),
∴f(-x)=f(x)
即當(dāng)x<0時,f(x)=ln(-x+1)
綜上所述,得f(x)=
由自然對數(shù)的底為e=2.71828…>1,當(dāng)x>0時原函數(shù)由對數(shù)函數(shù)y=lnx圖象左移一個單位而來,
得當(dāng)x>0時函數(shù)為增函數(shù),函數(shù)圖象是上凸的
根據(jù)以上討論,可得C選項符合條件
故選C
點評:本題著重考查了函數(shù)的奇偶性、對數(shù)函數(shù)的圖象與性質(zhì)和函數(shù)圖象的作法等知識點,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
2x+2-x
2
,g(x)=
2x-2-x
2

(1)計算:[f(1)]2-[g(1)]2;
(2)證明:[f(x)]2-[g(x)]2是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=x+
a
x
的定義域為(0,+∞),且f(2)=2+
2
2
.設(shè)點P是函數(shù)圖象上的任意一點,過點P分別作直線y=x和y軸的垂線,垂足分別為M、N.
(1)求a的值.
(2)問:|PM|•|PN|是否為定值?若是,則求出該定值;若不是,請說明理由.
(3)設(shè)O為坐標(biāo)原點,求四邊形OMPN面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點,橫坐標(biāo)為
1
2
的點P滿足2
OP
=
OM
+
ON
(O為坐標(biāo)原點).
(Ⅰ)求證:y1+y2為定值;
(Ⅱ)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*,且n≥2,求Sn
(Ⅲ)已知an=
1
6
,                          n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
,其中n∈N*,Tn為數(shù)列{an}的前n項和,若Tn<m(Sn+1+1)對一切n∈N*都成立,試求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)是f(x)圖象上的兩點,且x1+x2=1.
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)(n∈N*,N≥2),求Sn;
(3)在(2)的條件下,若an=
1
6
 ,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項和.求Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sin(2x-
π
6
),g(x)=sin(2x+
π
3
),直線y=m與兩個相鄰函數(shù)的交點為A,B,若m變化時,AB的長度是一個定值,則AB的值是( 。

查看答案和解析>>

同步練習(xí)冊答案