如圖:已知三棱柱ABC-A1B1C1的側(cè)棱與底面邊長都相等,過頂點A1作底面ABC的垂線,若垂足為BC的中點,則異面直線AB與CC1成的角的余弦值為   
【答案】分析:確定∠A1AB即為異面直線AB與CC1所成的角,再在△∠A1AB中,利用余弦定理即可求解.
解答:解:設(shè)BC的中點為D,連接A1D、AD、A1B,則
∵AA1∥CC1,∴∠A1AB即為異面直線AB與CC1所成的角.
設(shè)三棱柱ABC-A1B1C1的側(cè)棱與底面邊長為1,則|AD|=,|A1D|=,|A1B|=
由余弦定理,得cos∠A1AB==
故答案為:
點評:本題考查線線角,考查余弦定理的運用,解題的關(guān)鍵是確定線線角.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥底面ABC,AC=BC=2,AA1=4,AB=2
2
,M,N分別是棱CC1,AB中點.
(Ⅰ)求證:CN⊥平面ABB1A1;
(Ⅱ)求證:CN∥平面AMB1
(Ⅲ)求三棱錐B1-AMN的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,且AB⊥AC,M是CC1的中點,N是BC的中點,點P在直線A1B1上,且滿足
A1P
A1B1

(1)證明:PN⊥AM;
(2)當(dāng)λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角最大值的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的側(cè)棱與底面垂直,AA1=AB=AC=1,AB⊥AC,M,N分別是CC1,BC的中點,點P在直線A1B1上,且
A1P
A1B1
;
(Ⅰ)證明:無論λ取何值,總有AM⊥PN;
(Ⅱ)當(dāng)λ取何值時,直線PN與平面ABC所成的角θ最大?并求該角取最大值時的正切值;
(Ⅲ)是否存在點P,使得平面PMN與平面ABC所成的二面角為30°,若存在,試確定點P的位置,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知三棱柱ABC-A1B1C1的所有棱長均為2,且A1A⊥底面ABC,D為AB的中點,G為△ABC1的重心,則|
CG
|的值為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=BC,∠ABC=90°,D為AC中點.
(1)求證:BD⊥AC1
(2)若AB=
2
,AA1=2
3
,求AC1與平面ABC所成的角.

查看答案和解析>>

同步練習(xí)冊答案