【題目】數(shù)列{an}中,已知a1= ,an+1=
(1)證明:an<an+1 ;
(2)證明:當(dāng)n≥2時(shí),( <2.

【答案】
(1)證明:由 ,得 ,即0≤an≤1.

∴an+1= = ,

又a1= ≠0,且 ,∴0

>0.


(2)證明:當(dāng)n=2時(shí),

又∵ ,

即當(dāng)n=2時(shí), 成立,

當(dāng)n=k時(shí), 成立,即 成立,

當(dāng)n=k+1時(shí), =

∵an+1>an,∴ak+1>ak

= ,

∴當(dāng)n=k+1時(shí), 也成立,

∴當(dāng)n≥2時(shí), 成立


【解析】(1)由已知a1= ,an+1= ,即可得到 ,又0 ,進(jìn)一步得到 ,則結(jié)論an<an+1 可證;(2)首先證當(dāng)n=2時(shí), 成立,即當(dāng)n=k時(shí), 成立,當(dāng)n=k+1時(shí),ak+1>ak , 則 = ,則結(jié)論當(dāng)n≥2時(shí),( <2可證.
【考點(diǎn)精析】關(guān)于本題考查的數(shù)列的通項(xiàng)公式,需要了解如果數(shù)列an的第n項(xiàng)與n之間的關(guān)系可以用一個(gè)公式表示,那么這個(gè)公式就叫這個(gè)數(shù)列的通項(xiàng)公式才能得出正確答案.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】通過隨機(jī)詢問110名性別不同的大學(xué)生是否愛好某項(xiàng)運(yùn)動(dòng),得到如下的列聯(lián)表:

計(jì)

愛好

40

20

60

不愛好

20

30

50

計(jì)

60

50

110

根據(jù)上述數(shù)據(jù)能得出的結(jié)論是(
(參考公式與數(shù)據(jù):X2= .當(dāng)X2>3.841時(shí),有95%的把握說事件A與B有關(guān);當(dāng)X2>6.635時(shí),有99%的把握說事件A與B有關(guān); 當(dāng)X2<3.841時(shí)認(rèn)為事件A與B無關(guān).)
A.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99%的把握認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”
C.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.在犯錯(cuò)誤的概率不超過0.1%的前提下,認(rèn)為“愛好該項(xiàng)運(yùn)動(dòng)與性別無關(guān)”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,△ABC是邊長(zhǎng)為2的正三角形,∠PCA=90°,E,H分別為AP,AC的中點(diǎn),AP=4,BE=
(Ⅰ)求證:AC⊥平面BEH;
(Ⅱ)求直線PA與平面ABC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方體ABCD﹣A1B1C1D1中,E為BC1的中點(diǎn),則DE與面BCC1B1所成角的正切值為(

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y=|x2﹣1|的圖象與函數(shù)y=kx2﹣(k+2)x+2的圖象恰有2個(gè)不同的公共點(diǎn),則實(shí)數(shù)k的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,∠BAC=10°,∠ACB=30°,將直線BC繞AC旋轉(zhuǎn)得到B1C,直線AC繞AB旋轉(zhuǎn)得到AC1 , 則在所有旋轉(zhuǎn)過程中,直線B1C與直線AC1所成角的取值范圍為

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)A1 , A2 , …,An(n≥4)為集合S={1,2,…,n}的n個(gè)不同子集,為了表示這些子集,作n行n列的數(shù)陣,規(guī)定第i行第j列的數(shù)為: .則下列說法中,錯(cuò)誤的是(

A.數(shù)陣中第一列的數(shù)全是0當(dāng)且僅當(dāng)A1=
B.數(shù)陣中第n列的數(shù)全是1當(dāng)且僅當(dāng)An=S
C.數(shù)陣中第j行的數(shù)字和表明集合Aj含有幾個(gè)元素
D.數(shù)陣中所有的n2個(gè)數(shù)字之和不超過n2﹣n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】交通管理部門為了解機(jī)動(dòng)車駕駛員(簡(jiǎn)稱駕駛員)對(duì)某新法規(guī)的知曉情況,對(duì)甲、乙、丙、丁四個(gè)社區(qū)做分層抽樣調(diào)查.假設(shè)四個(gè)社區(qū)駕駛員的總?cè)藬?shù)為N,其中甲社區(qū)有駕駛員96人.若在甲、乙、丙、丁四個(gè)社區(qū)抽取駕駛員的人數(shù)分別為12,21,25,43,則這四個(gè)社區(qū)駕駛員的總?cè)藬?shù)N為(
A.101
B.808
C.1212
D.2012

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn)(2, )且離心率等于 ,點(diǎn)A,B分別為橢圓C的左右頂點(diǎn),點(diǎn)P在橢圓C上.
(1)求橢圓C的方程;
(2)M,N是橢圓C上非頂點(diǎn)的兩點(diǎn),滿足OM∥AP,ON∥BP,求證:三角形MON的面積是定值.

查看答案和解析>>

同步練習(xí)冊(cè)答案