4.已知等比數(shù)列{an}的各項均為正數(shù),公比q≠1,記P=$\frac{{a}_{2}+{a}_{10}}{2}$,Q=$\sqrt{{a}_{5}{a}_{7}}$,則P與Q的大小關(guān)系是( 。
A.P<QB.P>QC.P=QD.無法確定

分析 由等比數(shù)列的性質(zhì)和基本不等式可得P=$\frac{{a}_{2}+{a}_{10}}{2}$≥$\sqrt{{a}_{2}{a}_{10}}$=$\sqrt{{a}_{5}{a}_{7}}$=Q,由等號不成立可得結(jié)論.

解答 解:∵等比數(shù)列{an}的各項均為正數(shù),
∴a2a10=a5a7,
由基本不等式可得P=$\frac{{a}_{2}+{a}_{10}}{2}$≥$\sqrt{{a}_{2}{a}_{10}}$=$\sqrt{{a}_{5}{a}_{7}}$=Q,
∵公比q≠1,∴a2≠a10,故上式取不到等號,
故P>Q
故選:B

點(diǎn)評 本題考查基本不等式,涉及等比數(shù)列的性質(zhì),屬基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)△ABC的內(nèi)角A、B、C所對的邊長分別為a、b、c,且a2+c2=b2+6c,bsinA=4.
(1)求邊長a;
(2)若△ABC的面積S=10,求cosC的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.設(shè)正數(shù)列{an}滿足a1=a2=1,$\sqrt{{a}_{n}{a}_{n-2}}$-$\sqrt{{a}_{n-1}{a}_{n-2}}$=2an-1(n≥3),求通項公式an

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=lnx-(x-1)(a為常數(shù)).
(1)求函數(shù)f(x)的極值;
(2)試證明:對任意的n∈N*,都有l(wèi)n(1+$\frac{1}{n}$)$<\frac{1}{n}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.定義在R上的奇函數(shù)f(x),當(dāng)x≥0時,f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{3}}(x+1),x∈[0,2)}\\{-\frac{1}{2}{x}^{2}+4x-7,x∈[2,+∞)}\end{array}\right.$,則關(guān)于x的方程f(x)=a(0<a<1)的所有根之和為( 。
A.3-a-1B.1-3-aC.3a-1D.1-3a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.求函數(shù)f(x)=(x+1)3ex+1的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.不等式3x2+5x-2<0的解集為( 。
A.(-∞,-2)∪($\frac{1}{3}$,+∞)B.(-2,$\frac{1}{3}$)C.[-2,$\frac{1}{3}$)D.(-2,$\frac{1}{3}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.設(shè)函數(shù)f(x)=$\frac{{e}^{x}}{x}$.
(Ⅰ)求曲線在(-1,f(-1))處的切線方程;
(Ⅱ)若k>0,求不等式f′(x)+k(1-x)f(x)>0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.求下列函數(shù)在給定區(qū)間上的最大值與最小值:
(1)f(x)=6x2+x+2,x∈[-1,1]:
(2)f(x)=x3-12x,x∈[-3,3]:
(3)f(x)=6-12x+x2,x∈[-$\frac{1}{3}$,1]:
(4)f(x)=48x-x3,x∈[-3,5].

查看答案和解析>>

同步練習(xí)冊答案