科目:高中數(shù)學(xué) 來源:新課標高三數(shù)學(xué)對稱問題、圓的方程專項訓(xùn)練(河北) 題型:解答題
求過兩點A(1,4)、B(3,2),且圓心在直線y=0上的圓的標準方程.并判斷點M1(2,3),M2(2,4)與圓的位置關(guān)系.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆江西省高一下學(xué)期期中考試數(shù)學(xué)試題 題型:解答題
已知圓C與x軸相切,圓心在直線y=3x上,且被直線2x+y-10=0截得的弦長為4,
求此圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
求下列各圓的標準方程:
(1)圓心在直線y=0上,且圓過兩點A(1,4),B(3,2);
(2)圓心在直線2x+y=0上,且圓與直線x+y-1=0切于點M(2,-1).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高一第二學(xué)期期中考試數(shù)學(xué)試卷(解析版) 題型:解答題
求圓心在直線y=-2x上,并且經(jīng)過點A(2,-1),與直線x+y=1相切的圓的方程.
【解析】利用圓心和半徑表示圓的方程,首先
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2)
∴r==,
故所求圓的方程為:+=2
解:法一:
設(shè)圓心為S,則KSA=1,∴SA的方程為:y+1=x-2,即y=x-3, ………4分
和y=-2x聯(lián)立解得x=1,y=-2,即圓心(1,-2) ……………………8分
∴r==, ………………………10分
故所求圓的方程為:+=2 ………………………12分
法二:由條件設(shè)所求圓的方程為:+=
, ………………………6分
解得a=1,b=-2, =2 ………………………10分
所求圓的方程為:+=2 ………………………12分
其它方法相應(yīng)給分
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com