已知函數(shù),函數(shù),
(1)若g(mx2+2x+m)的定義域?yàn)镽,求實(shí)數(shù)m的取值范圍;
(2)當(dāng)x∈[-1,1]時(shí),求函數(shù)y=[f(x)]2-2a f(x)+3的最小值h(a);
(3)是否存在非負(fù)實(shí)數(shù)m、n,使得函數(shù)的定義域?yàn)閇n,m],值域?yàn)閇2n,2m],若存在,求出m、n的值;若不存在,則說明理由。
解:(1),
,

當(dāng)m=0時(shí),u=2x,的定義域?yàn)椋?,+∞),不成立;
當(dāng)m≠0時(shí),
的定義域?yàn)镽,

解得m>1;
綜上所述,m>1。
(2),x∈[-1,1],

,
對稱軸為t=a,
當(dāng)
當(dāng);
當(dāng)a>3時(shí),;
綜上所述,;
(3),
假設(shè)存在,
由題意,知,
∴存在n=0,m=2,使得函數(shù)的定義域?yàn)閇0,2],值域?yàn)閇0,4]。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是R上的增函數(shù),A(0,-1),B(3,1)是其圖象上的兩點(diǎn),那么|f(-2x+1)|<1的解集的補(bǔ)集為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的定義域?yàn)閇-1,5],部分對應(yīng)值如下表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,給出關(guān)于f(x)的下列命題:
x -1 0 2 4 5
f(x) 1 2 0 2 1
①函數(shù)y=f(x)在x=2取到極小值;
②函數(shù)f(x)在[0,1]是減函數(shù),在[1,2]是增函數(shù);
③當(dāng)1<a<2時(shí),函數(shù)y=f(x)-a有4個(gè)零點(diǎn);
④如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是2,那么t的最小值為0.
其中所有正確命題是
①③④
①③④
(寫出正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列四個(gè)命題:
(1)已知函數(shù)f(x)=
1
2
x2   x≤2
log2(x+a)  x>2
在定義域內(nèi)是連續(xù)函數(shù),數(shù)列{an}通項(xiàng)公式為an=
1
an
,則數(shù)列{an}的所有項(xiàng)之和為1.
(2)過點(diǎn)P(3,3)與曲線(x-2)2-
(y-1)2
4
=1有唯一公共點(diǎn)的直線有且只有兩條.
(3)向量
a
=(x2,x+1)
b
=(1-x,t)
,若函數(shù)f(x)=
a
b
在區(qū)間[-1,1]上是增函數(shù),則實(shí)數(shù)t的取值范圍是(5,+∞);
(4)我們定義非空集合A的真子集的真子集為A的“孫集”,則集合{2,4,6,8,10}的“孫集”有26個(gè).
其中正確的命題有
(1)(2)(4)
(1)(2)(4)
(填序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a2
x2+(a+1)x+2ln(x-1)

(Ⅰ)若曲線y=f(x)在點(diǎn)(2,f(2))處的切線與直線2x-y+1=0平行,求出這條切線的方程;
(Ⅱ)討論函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅲ)若對于任意的x∈(1,+∞),都有f(x)<-2,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在(-1,1)上有定義,f()=-1,當(dāng)且僅當(dāng)0<x<1時(shí)f(x)<0,且對任意x、y∈(-1,1)都有f(x)+f(y)=f(),試證明:w.w.w.k.s.5.u.c.o.m       

(1)f(x)為奇函數(shù);(2)f(x)在(-1,1)上單調(diào)遞減.

查看答案和解析>>

同步練習(xí)冊答案