【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)在上的最小值;
(2)若,不等式恒成立,求的取值范圍;
(3)若,不等式恒成立,求的取值范圍.
【答案】(1);(2);(3).
【解析】
試題分析:(1)由時(shí),得出,則,再求導(dǎo),可得函數(shù)在上是增函數(shù),從而得到函數(shù)的單調(diào)性,即可求解函數(shù)在上的最小值; (2)由(1)知函數(shù)在上是增函數(shù),且,使得,得,即,設(shè),利用函數(shù)的單調(diào)性,即可求解求的取值范圍;(3)根據(jù)題意,轉(zhuǎn)化為對(duì)任意成立,令,所以,可得出的單調(diào)性,求解出的最小值,即可的取值范圍.
試題解析:(1)時(shí),,,
,所以函數(shù)在上是增函數(shù),
又函數(shù)的值域?yàn)镽,
故,使得,
又,,所以當(dāng)時(shí),,
即函數(shù)在區(qū)間上遞增,所以
(2),
由(1)知函數(shù)在上是增函數(shù),且,使得
進(jìn)而函數(shù)在區(qū)間上遞減,在上遞增,
由得:,
,,
因?yàn)?/span>,不等式恒成立,
(另解:因?yàn)?/span>,不等式恒成立,
即
由,
當(dāng)時(shí)取等號(hào),)
(3)由,,
,對(duì)任意成立,
令函數(shù),所以,
當(dāng)時(shí),,當(dāng)時(shí),,
所以當(dāng)時(shí),函數(shù)取得最小值,
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,建立平面直角坐標(biāo)系,軸在地平面上,軸垂直于地平面,單位長(zhǎng)度為1千米,某炮位于坐標(biāo)原點(diǎn),已知炮彈發(fā)射后的軌跡在方程表示的曲線上,其中與發(fā)射方向有關(guān),炮的射程是指炮彈落地點(diǎn)的橫坐標(biāo).
(1)求炮的最大射程;
(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問(wèn)它的橫坐標(biāo)不超過(guò)多少時(shí),炮彈可以擊中它?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】一個(gè)四棱錐的三視圖如圖所示.
(1)求證:PA⊥BD;
(2)在線段PD上是否存在一點(diǎn)Q,使二面角Q-AC-D的平面角為30°?若存在,求的值;若不存在,說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列說(shuō)法正確的是( )
A. 由歸納推理得到的結(jié)論一定正確
B. 由類比推理得到的結(jié)論一定正確
C. 由合情推理得到的結(jié)論一定正確
D. 演繹推理在前提和推理形式都正確的前提下,得到的結(jié)論一定正確
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如果學(xué)生的成績(jī)大于或等于60分,則輸出“及格”,否則輸出“不及格”.用程序框圖表示這一算法過(guò)程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若不等式x2-(a+1)x+a≤0的解集是[-4,3]的子集,則a的取值范圍是( )
A. [-4,1] B. [-4,3] C. [1,3] D. [-1,3]
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列試驗(yàn)中,是古典概型的為( )
A.種下一粒種子,觀察它是否發(fā)芽
B.從規(guī)格直徑為250 mm±0.6 mm的一批合格產(chǎn)品中任意抽一件,測(cè)量其直徑d
C.拋一枚硬幣,觀察其向上的面
D.某人射擊中靶或不中靶
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】用隨機(jī)數(shù)表法進(jìn)行抽樣有以下幾個(gè)步驟:①將總體中的個(gè)體編號(hào);②獲取樣本號(hào)碼;③選定開(kāi)始的數(shù)字,這些步驟的先后順序應(yīng)為 ( )
A. ①②③ B. ③②①
C. ①③② D. ③①②
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知曲線C上任意一點(diǎn)M滿足|MF1|+|MF2|=4,其中F1(,F2(,
(Ⅰ)求曲線C的方程;
(Ⅱ)已知直線與曲線C交于A,B兩點(diǎn),是否存在實(shí)數(shù)k使得以線段AB為直徑的圓恰好經(jīng)過(guò)坐標(biāo)原點(diǎn)O?若存在,求出k的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com