16.定義在(0,+∞)上的增函數(shù)f(x)滿足條件:f(xy)=f(x)f(y)對(duì)所有正實(shí)數(shù)x,y均成立,且f(2)=4.
(1)求f(1)和f(8)的值;
(2)解關(guān)于x的不等式:16f($\frac{1}{x-3}$)≥f(2x+1).

分析 (1)利用賦值法,代入計(jì)算求f(1)和f(8)的值;
(2)由(1)把16f($\frac{1}{x-3}$)≥f(2x+1)轉(zhuǎn)化為f($\frac{4}{x-3}$)≥f(2x+1),再由f(x)是定義在(0,+∞)上的增函數(shù),可得$\left\{\begin{array}{l}{\frac{4}{x-3}>0}\\{2x+1>0}\\{\frac{4}{x-3}≥2x+1}\end{array}\right.$,求解不等式組得答案.

解答 解:(1)∵f(xy)=f(x)f(y),∴f(1×2)=f(1)f(2),
∵f(2)=4,∴f(1)=1,
f(4)=f(2)f(2)=16,f(8)=f(2)f(4)=64;
(2)由16f($\frac{1}{x-3}$)≥f(2x+1),得f(4)f($\frac{1}{x-3}$)≥f(2x+1),
即f($\frac{4}{x-3}$)≥f(2x+1),
∵f(x)是定義在(0,+∞)上的增函數(shù),
∴$\left\{\begin{array}{l}{\frac{4}{x-3}>0}\\{2x+1>0}\\{\frac{4}{x-3}≥2x+1}\end{array}\right.$,即$\left\{\begin{array}{l}{x>3}\\{2{x}^{2}-5x-7≤0}\end{array}\right.$,
解得:3<x≤$\frac{7}{2}$.
∴不等式:16f($\frac{1}{x-3}$)≥f(2x+1)的解集為(3,$\frac{7}{2}$].

點(diǎn)評(píng) 本題考查抽象函數(shù)及其應(yīng)用,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知過定點(diǎn)P(2,0)的直線l與曲線y=$\sqrt{2-x^2}$相交于A、B兩點(diǎn),O為坐標(biāo)原點(diǎn),當(dāng)△AOB的面積取最大時(shí),直線的傾斜角可以是:①30°;②45°;③60°;④120°⑤150°.其中正確答案的序號(hào)是⑤.(寫出所有正確答案的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.如圖所示,在正六邊形ABCDEF中,$\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EF}$=( 。
A.0B.$\overrightarrow{BE}$
C.$\overrightarrow{CF}$D.以上答案都不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.給出定義:若函數(shù)f(x)在D上可導(dǎo),即f′(x)存在,且導(dǎo)函數(shù)f′(x)在D上也可導(dǎo),則稱f(x)在D上存在二階導(dǎo)函數(shù),記f″(x)=(f′(x))′,若f″(x)<0在D上恒成立,則稱f(x)在D上為凸函數(shù).以下四個(gè)函數(shù)在$({0,\frac{π}{2}})$上是凸函數(shù)的是①③④.
①f(x)=sinx+cosx②f(x)=-xe-x③f(x)=lnx-2x④f(x)=-x3+2x-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.若實(shí)數(shù)x,y滿足(x+5)2+(y-12)2=16,則x2+y2的最小值81.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知$f(x)=sin(2x+\frac{π}{6})+\frac{1}{2}$
(1)用五點(diǎn)法完成下列表格,并畫出函數(shù)f(x)在區(qū)間$[-\frac{π}{12},\frac{11π}{12}]$上的簡(jiǎn)圖;
(2)若$x∈[-\frac{π}{6},\frac{π}{3}]$,函數(shù)g(x)=f(x)+m的最小值為2,試求處函數(shù)g(x)的最大值,指出x取值時(shí),函數(shù)g(x)取得最大值.
x     
 2x+$\frac{π}{6}$     
 sin(2x+$\frac{π}{6}$)     
 f(x)     

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知一條光線自點(diǎn)M(2,1)射出,經(jīng)x軸反射后經(jīng)過點(diǎn)N(4,5),則反射光線所在的直線方程是( 。
A.3x+y+5=0B.2x-y-3=0C.3x-y-7=0D.3x-y-5=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.下列函數(shù)中,最小正周期為π的是( 。
A.y=sin|x|B.y=|sinx|C.$y=sin\frac{x}{2}$D.$y=cos\frac{x}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知函數(shù)f(x)的定義域[-1,5],部分對(duì)應(yīng)值如表,f(x)的導(dǎo)函數(shù)y=f′(x)的圖象如圖所示,
 x-10245
f(x)141.541
下列關(guān)于函數(shù)f(x)的命題:
①函數(shù)f(x)的值域?yàn)閇1,4];
②函數(shù)f(x)在[0,2]上是減函數(shù);
③如果當(dāng)x∈[-1,t]時(shí),f(x)的最大值是4,那么t的最大值為4;
④當(dāng)1<a<4時(shí),函數(shù)y=f(x)-a最多有4個(gè)零點(diǎn).
其中正確的命題個(gè)數(shù)為( 。
A.0B.1C.2D.3

查看答案和解析>>

同步練習(xí)冊(cè)答案