A. | 0 | B. | $\overrightarrow{BE}$ | ||
C. | $\overrightarrow{CF}$ | D. | 以上答案都不正確 |
分析 在正六邊形ABCDEF中,連接AD,BE,根據(jù)三角形的法則即可求出.
解答 解:在正六邊形ABCDEF中,連接AD,BE,
∴$\overrightarrow{CD}$=$\overrightarrow{BO}$,$\overrightarrow{EF}$=$\overrightarrow{OA}$,
∴$\overrightarrow{AB}+\overrightarrow{CD}+\overrightarrow{EF}$=$\overrightarrow{AB}$+$\overrightarrow{BO}$+$\overrightarrow{OA}$=0
故選:A
點評 本題考查了向量的三角形法則,和正六邊形的性質(zhì),屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若ac>bc⇒a>b | B. | 若a2>b2⇒a>b | C. | 若$\frac{1}{a}>\frac{1}⇒a<b$ | D. | 若$\sqrt{a}<\sqrt⇒{a^3}<{b^3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若x2≥1,則x≥1 | B. | 若x≥1,則x2≥1 | C. | 若x>1,則x2>1 | D. | 若x<1,則x2<1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3+2$\sqrt{2}$ | D. | 3-2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{x^2}{4}-\frac{y^2}{2}=1$ | B. | $\frac{x^2}{2}+\frac{y^2}{3}=1$ | C. | $\frac{x^2}{2}-\frac{y^2}{4}=1$ | D. | $\frac{y^2}{4}-\frac{x^2}{2}=1$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com