【題目】已知函數(shù)和(且為常數(shù)),則下列結(jié)論正確的是( )
A.當時,存在實數(shù),使得關(guān)于的方程有四個不同的實數(shù)根
B.存在,使得關(guān)于的方程有三個不同的實數(shù)根
C.當時,若函數(shù)恰有個不同的零點、、,則
D.當時,且關(guān)于的方程有四個不同的實數(shù)根、、、,若在上的最大值為,則
【答案】ACD
【解析】
分和兩種情況討論,利用數(shù)形結(jié)合思想可判斷出A、B選項的正誤;設(shè),利用復(fù)合函數(shù)的零點可判斷C選項的正誤;求出、的值,結(jié)合對稱性可判斷出D選項的正誤.
若,則函數(shù)在區(qū)間上單調(diào)遞增,
且當時,,如下圖所示:
如上圖可知,此時關(guān)于的方程根的個數(shù)不大于,B選項不合乎題意;
若,且當時,函數(shù)在區(qū)間上單調(diào)遞增,在上單調(diào)遞減,此時,
當時,若關(guān)于的方程有四個不同的實數(shù)根,則,解得,A選項正確;
設(shè),由,得,
當時,,設(shè)關(guān)于的一元二次方程的兩根分別為、,由于函數(shù)有三個零點,則,,設(shè),
由,得,由圖象可知,,
由,則,,即,,C選項正確;
當時,若,,
此時,函數(shù)與函數(shù)在區(qū)間上的兩個交點關(guān)于直線對稱,則.
如下圖所示,當時,函數(shù)與函數(shù)的兩個交點的橫坐標、滿足,且有,,則,
,,由圖象可知,函數(shù)在上單調(diào)遞減,在上單調(diào)增,,,
所以,,,則,,
所以,,D選項正確.
故選:ACD.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】射擊測試有兩種方案,方案1:先在甲靶射擊一次,以后都在乙靶射擊;方案2:始終在乙靶射擊,某射手命中甲靶的概率為,命中一次得3分;命中乙靶的概率為,命中一次得2分,若沒有命中則得0分,用隨機變量表示該射手一次測試累計得分,如果的值不低于3分就認為通過測試,立即停止射擊;否則繼續(xù)射擊,但一次測試最多打靶3次,每次射擊的結(jié)果相互獨立。
(1)如果該射手選擇方案1,求其測試結(jié)束后所得分的分布列和數(shù)學(xué)期望E;
(2)該射手選擇哪種方案通過測試的可能性大?請說明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系.
(Ⅰ)求圓C的極坐標方程;
(Ⅱ)直線l的極坐標方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標系xoy中,已知曲線,直線過定點(—2,2),且斜率為.以O為極點,x軸的正半軸為極軸建立極坐標系.
(1)求曲線的直角坐標方程以及直線l的參數(shù)方程;
(2)點P在曲線上,當時,求點P到直線l的最小距離并求點P的坐標
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓和拋物線,在上各取兩個點,這四個點的坐標為.
(Ⅰ)求的方程;
(Ⅱ)設(shè)是在第一象限上的點,在點處的切線與交于兩點,線段的中點為,過原點的直線與過點且垂直于軸的直線交于點,證明:點在定直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù).
(1)當時,求函數(shù)的零點個數(shù);
(2)若,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】因市場戰(zhàn)略儲備的需要,某公司月日起,每月日購買了相同金額的某種物資,連續(xù)購買了次.由于市場變化,月日該公司不得不將此物資全部賣出.已知該物資的購買和賣出都是以份為計價單位進行交易,且該公司在買賣的過程中沒有虧本,那么下面個折線圖中,所有可以反映這種物資每份價格(單位:萬元)的變化情況的是( )
A.①②B.①③C.②③D.③
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com