(1)已知f(x)=
23x-1
+m
是奇函數(shù),求常數(shù)m的值;
(2)設函數(shù)f(x)是定義在R上的偶函數(shù),并在區(qū)間(-∞,0)內單調遞增,f(2a2+a+1)<f(3a2-2a+1).求a的取值范圍.
分析:(1)由已知可知,f(-1)=-f(1)成立,代入即可求解m
(2)由已知及偶函數(shù)的性質可知f(x)在區(qū)間(0,+∞)內單調遞減,結合已知不等式及2a2+a+1>0,3a2-2a+1>0恒成立,可得2a2+a+1>3a2-2a+1,解不等式可求
解答:解:(1)由題意可得,x≠0
∵f(x)=
2
3x-1
+m
是奇函數(shù)
∴f(-1)=-f(1)
2
1
3
-1
+m
=-(1+m)
∴m=1
(2)∵函數(shù)f(x)是定義在R上的偶函數(shù),并在區(qū)間(-∞,0)內單調遞增,
∴f(x)在區(qū)間(0,+∞)內單調遞減
∵f(2a2+a+1)<f(3a2-2a+1)且2a2+a+1>0,3a2-2a+1>0恒成立,
∴2a2+a+1>3a2-2a+1
即a2-3a<0
∴0<a<3
點評:本題主要考查了奇函數(shù)的性質的簡單應用及函數(shù)的單調性及奇偶性在求解不等式中的綜合應用
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)的定義域為x∈R且x≠1,已知f(x+1)為奇函數(shù),當x<1時,f(x)=2x2-x+1,那么,當x>1時,f(x)的遞減區(qū)間是(  )
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)是一次函數(shù),且滿足3f(x+1)-2f(x-1)=2x+17,求f(x);
(2)已知f(x)滿足2f(x)+f(
1x
)=3x,求f(x).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列四個命題:
①已知f(x)+2f(
1
x
)=3x
,則函數(shù)g(x)=f(2x)在(0,1)上有唯一零點;
②對于函數(shù)f(x)=x
1
2
的定義域中任意的x1、x2(x1≠x2)必有f(
x1+x2
2
)<
f(x1)+f(x2)
2
;
③已知f(x)=|2-x+1-1|,a<b,f(a)<f(b),則必有0<f(b)<1;
④已知f(x)、g(x)是定義在R上的兩個函數(shù),對任意x、y∈R滿足關系式f(x+y)+f(x-y)=2f(x)•g(y),且f(0)=0,但x≠0時f(x)•g(x)≠0.則函數(shù)f(x)、g(x)都是奇函數(shù).
其中正確命題的序號是
①③
①③

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=aln(1+ex)-(a+1)x.
(1)已知f(x)滿足下面兩個條件,求a的取值范圍.
①在(-∞,1]上存在極值,
②對于任意的θ∈R,c∈R直線l:xsinθ+2y+c=0都不是函數(shù)y=f(x)(x∈(-1,+∞))圖象的切線;
(2)若點A(x1,f(x1)),B(x2,f(x2)),C(x3,f(x3))從左到右依次是函數(shù)y=f(x)圖象上三點,且2x2=x1+x3,當a>0時,△ABC能否是等腰三角形?若能,求△ABC面積的最大值;若不能,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(1)已知f(x)=2+log4x(1≤x≤16),求函數(shù)g(x)=[f(x)]2+f(x2)的值域.
(2)若直線y=4a與y=|ax-2|(a>0且a≠1)的圖象有兩個公共點,求a的取值范圍.

查看答案和解析>>

同步練習冊答案