已知f(x)的定義域?yàn)閤∈R且x≠1,已知f(x+1)為奇函數(shù),當(dāng)x<1時(shí),f(x)=2x2-x+1,那么,當(dāng)x>1時(shí),f(x)的遞減區(qū)間是( 。
A、[
5
4
,+∞)
B、[1,
5
4
]
C、[
7
4
,+∞)
D、(1,
7
4
]
分析:由f(x+1)為奇函數(shù),利用換元法得f(x)=-f(2-x),再設(shè)x>1,則2-x<1,代入解析式求出f(2-x),由關(guān)系式求出f(x),根據(jù)二次函數(shù)的單調(diào)性求出它的減區(qū)間.
解答:解:由題意知,f(x+1)為奇函數(shù),則f(-x+1)=-f(x+1),
令t=-x+1,則x=1-t,故f(t)=-f(2-t),即f(x)=-f(2-x),
設(shè)x>1,則2-x<1,
∵當(dāng)x<1時(shí),f(x)=2x2-x+1,
∴f(2-x)=2(2-x)2-(2-x)+1=2x2-7x+7,
∴f(x)=-f(2-x)=-2x2+7x-7,
∴函數(shù)的對(duì)稱(chēng)軸x=
7
4

故所求的減區(qū)間是 [
7
4
,+∞ )

故選C.
點(diǎn)評(píng):本題主要考查對(duì)單調(diào)性和奇偶性的理解,判斷函數(shù)奇偶性和求函數(shù)單調(diào)區(qū)間的基本方法以及函數(shù)解析式的求解方法的掌握,關(guān)鍵利用奇函數(shù)的定義推出的關(guān)系式;并且函數(shù)的單調(diào)性、奇偶性是高考函數(shù)題的重點(diǎn)考查內(nèi)容.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域?yàn)閇-1,2),則f(|x|)的定義域?yàn)椋ā 。?/div>
A、[-1,2)B、[-1,1]C、(-2,2)D、[-2,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域是[0,1],且f(x+m)+f(x-m)的定義域是∅,則正數(shù)m的取值范圍是
m>
1
2
m>
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域?yàn)閧x∈R|x≠0},且f(x)是奇函數(shù),當(dāng)x>0時(shí)f(x)=-x2+bx+c,若f(1)=f(3),f(2)=2.
(1)求b,c的值;及f(x)在x>0時(shí)的表達(dá)式;
(2)求f(x)在x<0時(shí)的表達(dá)式;
(3)若關(guān)于x的方程f(x)=ax(a∈R)有解,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域?yàn)镽+,且f(x+y)=f(x)+f(y)對(duì)一切正實(shí)數(shù)x,y都成立,若f(8)=4,則f(2)=( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)的定義域?yàn)閇0,1],求函數(shù)y=f(x+a)+f(x-a)(0<a<
12
)的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案