設(shè)O、A、B、C為平面內(nèi)四點(diǎn),
OA
=
a
OB
=
b
OC
=
c
,且
a
+
b
+
c
=
0
,
a
b
=
b
c
=
c
a
=-1
,則|
a
|2+|
b
|2+|
c
|2
=
 
分析:欲求|
a
|2+|
b
|2+|
c
|2
,根據(jù)向量的性質(zhì)知,只須求出(
a
)2+(
b
)2+(
c
)2
,結(jié)合條件,只須將式子
a
+
b
+
c
=
0
平方即得.
解答:解:∵
a
+
b
+
c
=
0
,平方得:
|
a
|2+|
b
|2+|
c
|2+2(
a
b
+
b
c
+
c
a
)=0
,
a
b
=
b
c
=
c
a
=-1

|
a
|2+|
b
|2+|
c
|2+2×(-3)=0

|
a
|2+|
b
|2+|
c
|2=6

故答案為:6.
點(diǎn)評(píng):本小題主要考查向量的模的應(yīng)用、向量的數(shù)量積的應(yīng)用等基礎(chǔ)知識(shí),考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

3、如圖,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2002年全國各省市高考模擬試題匯編 題型:013

有四個(gè)命題:

①若是實(shí)數(shù),則正整數(shù)n的最小值是4

②設(shè)z是虛數(shù),則z+

③若都是非零復(fù)數(shù),,且復(fù)平面上O為原點(diǎn),點(diǎn)A和B分別與對(duì)應(yīng),∠AOB=,則

④若復(fù)數(shù)z滿足|z-|≤1,則≤arg(-zi)≤,其中真命題是

[  ]

A.①③④
B.①②③
C.①②④
D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

如圖,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于點(diǎn)P,則點(diǎn)P的軌跡是


  1. A.
    橢圓
  2. B.
    雙曲線
  3. C.
    拋物線
  4. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

(理)一個(gè)圓形紙片,圓心為O,F(xiàn)為圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于P,則P的軌跡是


  1. A.
    橢圓
  2. B.
    雙曲線
  3. C.
    拋物線
  4. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:0113 期末題 題型:單選題

如圖,一圓形紙片的圓心為O,F(xiàn)是圓內(nèi)一定點(diǎn),M是圓周上一動(dòng)點(diǎn),把紙片折疊使M與F重合,然后抹平紙片,折痕為CD,設(shè)CD與OM交于P,則點(diǎn)P的軌跡是
[     ]
A.橢圓
B.雙曲線
C.拋物線
D.圓

查看答案和解析>>

同步練習(xí)冊(cè)答案