已知函數(shù)(ω>0,.其圖象的最高點(diǎn)與相鄰對(duì)稱中心的距離為,且過(guò)點(diǎn)
(Ⅰ)求函數(shù)f(x)的達(dá)式;
(Ⅱ)在△ABC中.a(chǎn)、b、c分別是角A、B、C的對(duì)邊,,角C為銳角.且滿足2a=4asinC-csinA,求c的值.
【答案】分析:(Ⅰ)利用兩角和差的正弦公式化簡(jiǎn)函數(shù)的解析式,根據(jù)函數(shù)的周期求ω,把所給的點(diǎn)的坐標(biāo)代入求出Φ的值,從而確定出函數(shù)的解析式.
(Ⅱ)根據(jù)條件2a=4asinC-csinA,由正弦定理求得sinC的值,可得cosC的值,再由余弦定理求得c的值.
解答:解:(Ⅰ)由于.(2分)
∵最高點(diǎn)與相鄰對(duì)稱中心的距離為 ,則,即T=π,(3分)
,∵ω>0,∴ω=2.(4分)
又f(x)過(guò)點(diǎn),∴,即,∴.(5分)
,∴,∴.(6分)
(Ⅱ)2a=4asinC-csinA,由正弦定理可得 2sinA=4sinAsinC-sinCsinA,解得 .(8分)
又∵,∴.(9分)
,,∴b=6,(11分)
由余弦定理得c2=a2+b2-2abcosC=21,∴.(12分)
點(diǎn)評(píng):本題主要考查由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,兩角和差的正弦公式、正弦定理和余弦定理的應(yīng)用,兩個(gè)向量的數(shù)量積的定義,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的圖象與直線x=a,x=b及x軸所圍成圖形的面積稱為函數(shù)f(x)在[a,b]上的面積,已知函數(shù)y=sinnx在[0,
π
n
]上的面積為
2
n
(n∈N+),則函數(shù)y=sin3x在[0,
3
]上的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù),f(x)=
0(x>0)
-π(x=0)
x
2
3
+1(x<0)
,則復(fù)合函數(shù)f{f[f(-1)]}=( �。�
A、x2+1
B、π2+1
C、-π
D、0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)y=2cosx(0≤x≤2π)的圖象和直線y=2圍成一個(gè)封閉的平面圖形,則其面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)的圖象與直線x=a,x=b及x軸所圍成圖形的面積稱為函數(shù)f(x)在[a,b]上的面積.已知函數(shù)y=sinnx在[0,
π
n
]
上的面積為
2
n
(n∈N*)
,則函數(shù)y=cos3x在[0,
6
]
上的面積為
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=f(x)的圖象與直線x=a,y=b及x軸所圍成圖形的面積稱為函數(shù)f(x)在[a,b]上的面積,已知函數(shù)y=sinnx在[0,
π
n
]上的面積為
2
n
,則(1)函數(shù)y=sin3x在[0,
3
]上的面積為
4
3
4
3
,(2)函數(shù)y=sin(3x-π)在[
π
3
3
]
上的面積為
π+
2
3
π+
2
3

查看答案和解析>>

同步練習(xí)冊(cè)答案