已知{an}為等比數(shù)列,下面結(jié)論中正確的是( 。
A、a1+a3≥2a2
B、若a1=a3,則a1=a2
C、a12+a32≥2a22
D、若a3>a1,則a4>a2
考點:等比數(shù)列的性質(zhì),不等關(guān)系與不等式,等比數(shù)列的通項公式
專題:等差數(shù)列與等比數(shù)列
分析:利用等比數(shù)列的通項公式,結(jié)合基本不等式,進行判斷即可.
解答: 解:設(shè)等比數(shù)列的公比為q,則a1+a3=
a2
q
+a2q
,當(dāng)且僅當(dāng)a2,q同為正時,a1+a3≥2a2成立,故A不正確;
若a1=a3,則a1=a1q2,∴q2=1,∴q=±1,∴a1=a2或a1=-a2,故B不正確;
a12+a32=(
a2
q
)2+(a2q)2
≥2a22,故C正確;
若a3>a1,則a1q2>a1,∴a4-a2=a1q(q2-1),其正負由q的符號確定,故D不正確
故選:C.
點評:本題考查了等比數(shù)列的通項公式、等比數(shù)列的性質(zhì)、不等式的性質(zhì)等知識的綜合應(yīng)用,解題的關(guān)鍵是靈活利用基本知識.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)f(x)=lgx的圖象向左平移1個單位,再將位于x軸下方的圖象沿x軸翻折得到函數(shù)g(x)的圖象,若實數(shù)m,n(m<n)滿足g(m)=g(-
n+1
n+2
),g(10m+6n+21)=4lg2,則m-n的值是( 。
A、-
2
5
B、
1
3
C、-
1
15
D、
11
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某電視臺在娛樂頻道節(jié)目播放中,每小時播放廣告10分鐘,那么隨機打開電視機觀看這個頻道看到廣告的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

把邊長為2的正方形ABCD沿對角線BD折起,連接AC,得到三棱錐C-ABD,其正視圖、俯視圖均為全等的等腰直角三角形(如圖所示),則其側(cè)視圖的面積為( 。
A、
1
2
B、
3
2
C、1
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若(a-4i)i=b-i,(a,b∈R,i為虛數(shù)單位),則復(fù)數(shù)z=a+bi在復(fù)平面內(nèi)的對應(yīng)點位于( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC各角的對應(yīng)邊分別為a,b,c,滿足
b
a+c
+
c
a+b
≥1,則角A的范圍是( 。
A、(0,
π
3
]
B、(0,
π
6
]
C、[
π
3
,π)
D、[
π
6
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若0<a<1,且log
2
a
x1=logax2=loga+1x3
<0,則x1,x2,x3的大小關(guān)系是( 。
A、x1<x2<x3
B、x1<x3<x2
C、x3<x2<x1
D、x3<x1<x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

袋中裝有7個紅球和8個黑球,一次取4個球.
(Ⅰ)求取出的4個球同色的概率;
(Ⅱ)設(shè)取出黑球的個數(shù)為隨機變量ξ,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

教材上一例問題如下:
一只紅鈴蟲的產(chǎn)卵數(shù)y和溫度x有關(guān),現(xiàn)收集了7組觀測數(shù)據(jù)如下表,試建立y與x之間的回歸方程.
溫度x/℃ 21 23 25 27 29 32 35
產(chǎn)卵數(shù)y/個 7 11 21 24 66 115 325
某同學(xué)利用智能手機上的Mathstudio軟件研究它時(如圖所示),分別采用四種模型,所得結(jié)果如下:

模型 y=ax+b y=aebx y=ax2+c y=ax3+bx2+cx+d
計算結(jié)果
a=19.87
b=-463.731
v=0.864
a=0.015
b=0.284
v=0.993
a=0.367
c=-202.171
v=0.896
a=0.271
b=-20.171
c=801.638
v=0.995
根據(jù)上表,易知當(dāng)選擇序號為
 
的模型是,擬合效果較好.

查看答案和解析>>

同步練習(xí)冊答案