圓錐曲線
(x-1)2
16
-
y2
9
=1
的焦點坐標(biāo)是______.
根據(jù)曲線方程可知其軌跡為雙曲線,a=4,b=3,c=5
可能看成是由雙曲線
x2
16
-
y2
9
=1
向右平移一個單位得到的,
∵雙曲線
x2
16
-
y2
9
=1
的焦點坐標(biāo)是(-5,0),(5,0),
(x-1)2
16
-
y2
9
=1
的焦點坐標(biāo)是 (-4,0),(6,0).
故答案為:(-4,0),(6,0).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓錐曲線
x=3cosθ
y=2
2
sinθ
是參數(shù))和定點A(0,
3
3
)
,F(xiàn)1、F2是圓錐曲線的左、右焦點.
(1)求經(jīng)過點F2且垂直地于直線AF1的直線l的參數(shù)方程;
(2)以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,求直線AF2的極坐標(biāo)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

以下五個關(guān)于圓錐曲線的命題中:
①平面內(nèi)到定點A(1,0)和定直線l:x=2的距離之比為
1
2
的點的軌跡方程是
x2
4
+
y2
3
=1
;
②點P是拋物線y2=2x上的動點,點P在y軸上的射影是M點A的坐標(biāo)是A(3,6),則|PA|+|PM|的最小值是6;
③平面內(nèi)到兩定點距離之比等于常數(shù)λ(λ>0)的點的軌跡是圓;
④若動點M(x,y)滿足
(x-1)2+(y+2)2
=|2x-y-4|
,則動點M的軌跡是雙曲線;
⑤若過點C(1,1)的直線l交橢圓
x2
4
+
y2
3
=1
于不同的兩點A,B,且C是AB的中點,則直線l的方程是3x+4y-7=0.
其中真命題的序號是
 
.(寫出所有真命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

有以下結(jié)論:
(1)橢圓、雙曲線、拋物線和圓統(tǒng)稱為圓錐曲線;
(2)微積分創(chuàng)立于十七世紀(jì)中葉,它的創(chuàng)立與求曲線的切線直接相關(guān);
(3)若函數(shù)f(x)的導(dǎo)函數(shù)f'(x)=f(x),則f(x)=ex
其中正確的結(jié)論個數(shù)是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•廣州三模)如圖,長為m+1(m>0)的線段AB的兩個端點A和B分別在x軸和y軸上滑動,點M是線段AB上一點,且
AM
=m
MB

(1)求點M的軌跡Γ的方程,并判斷軌跡Γ為何種圓錐曲線;
(2)設(shè)過點Q(
1
2
,0)且斜率不為0的直線交軌跡Γ于C、D兩點.試問在x軸上是否存在定點P,使PQ平分∠CPD?若存在,求點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的兩個頂點A,B的坐標(biāo)分別是(0,-1),(0,1),且AC,BC所在直線的斜率之積等于m(m≠0).
(1)求頂點C的軌跡E的方程,并判斷軌跡E為何種圓錐曲線;
(2)當(dāng)m=-
12
時,過點F(1,0)的直線l交曲線E于M,N兩點,設(shè)點N關(guān)于x軸的對稱點為Q(M,Q不重合) 試問:直線MQ與x軸的交點是否為定點?若是,求出定點,若不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案