將半徑為4,中心角為900的扇形卷成一個(gè)圓錐,該圓錐的高為______.
如圖,點(diǎn)D為圓錐底面圓的圓心,
∵扇形OAB的圓心角為90°,半徑為4厘米,
弧AB=
90
180
•π×4
=2π,
∴2π•DC=2π,
∴DC=1,
在Rt△SDC中,SC=4,
SD=
SC2-DC2
=
15
,
∴用這個(gè)扇形卷成的圓錐的高為
15

故答案為:
15
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐S=ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,點(diǎn)E是SD上的點(diǎn),且DE=a(0<≦1).    
(Ⅰ)求證:對(duì)任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小為600C,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:一個(gè)圓錐的底面半徑為2,高為6,在其中有一個(gè)半徑為x的內(nèi)接圓柱.
(1)試用x表示圓柱的體積;
(2)當(dāng)x為何值時(shí),圓柱的側(cè)面積最大,最大值是多少.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知三棱錐O-ABC,OA=5,OB=4,OC=3,∠AOB=∠BOC=60°,∠COA=90°,M、N分別是棱OA、BC的中點(diǎn),則MN=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,正方體ABCD-A1B1C1D1的棱長(zhǎng)為4,E,F(xiàn)分別是棱CD、C1D1的中點(diǎn),長(zhǎng)為2的線段MN的一個(gè)端點(diǎn)M在線段EF上運(yùn)動(dòng),另一個(gè)端點(diǎn)N在底面A1B1C1D1上運(yùn)動(dòng),則線段MN的中點(diǎn)P的軌跡(曲面)與二面角D-C1D1-B1所圍成的幾何體的體積為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知正三棱錐的高為1,底面邊長(zhǎng)為2
6
,其內(nèi)有一個(gè)球和該三棱錐的四個(gè)面都相切,求:
(1)棱錐的全面積;
(2)球的半徑R.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

將邊長(zhǎng)為1的正方形ABCD沿對(duì)角線AC折起,使得平面ADC⊥平面ABC,在折起后形成的三棱錐D-ABC中,給出下列三個(gè)命題:
①△DBC是等邊三角形;
②AC⊥BD;
③三棱錐D-ABC的體積是
2
6

其中正確命題的序號(hào)是______.(寫出所有正確命題的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列結(jié)論正確的是(  )
A.各個(gè)面都是三角形的幾何體是三棱錐
B.以三角形的一條邊所在直線為旋轉(zhuǎn)軸,其余兩邊旋轉(zhuǎn)形成的曲面所圍成的幾何體叫圓錐
C.棱錐的側(cè)棱長(zhǎng)與底面多邊形的邊長(zhǎng)相等,則該棱錐可能是正六棱錐
D.圓錐的頂點(diǎn)與底面圓周上的任意一點(diǎn)的連線都是母線

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知是空間不同的直線,是不同的平面,給出下列四個(gè)命題:
           ②
          ④
其中為真命題的是(    )
A.①③B.①④C.②③D.③④

查看答案和解析>>

同步練習(xí)冊(cè)答案