【題目】某企業(yè)有甲、乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為 .現(xiàn)安排甲組研發(fā)新產(chǎn)品A,乙組研發(fā)新產(chǎn)品B,設甲、乙兩組的研發(fā)相互獨立.
(Ⅰ)求至少有一種新產(chǎn)品研發(fā)成功的概率;
(Ⅱ)若新產(chǎn)品A研發(fā)成功,預計企業(yè)可獲利潤120萬元;若新產(chǎn)品B研發(fā)成功,預計企業(yè)可獲利潤100萬元,求該企業(yè)可獲利潤的分布列和數(shù)學期望.

【答案】解:(Ⅰ)設至少有一種新產(chǎn)品研發(fā)成功的事件為事件A且事件B為事件A的對立事件,則事件B為一種新產(chǎn)品都沒有成功,

因為甲乙研發(fā)新產(chǎn)品成功的概率分別為

則P(B)= ,

再根據(jù)對立事件的概率之間的公式可得P(A)=1﹣P(B)= ,

故至少有一種新產(chǎn)品研發(fā)成功的概率為

(Ⅱ)由題可得設企業(yè)可獲得利潤為X,則X的取值有0,120,100,220,

由獨立試驗的概率計算公式可得,

,

,

,

所以X的分布列如下:

X

0

120

100

220

P(x)

則數(shù)學期望E(X)= =140


【解析】(Ⅰ)利用對立事件的概率公式,計算即可,(Ⅱ)求出企業(yè)利潤的分布列,再根據(jù)數(shù)學期望公式計算即可.
【考點精析】掌握離散型隨機變量及其分布列是解答本題的根本,需要知道在射擊、產(chǎn)品檢驗等例子中,對于隨機變量X可能取的值,我們可以按一定次序一一列出,這樣的隨機變量叫做離散型隨機變量.離散型隨機變量的分布列:一般的,設離散型隨機變量X可能取的值為x1,x2,.....,xi,......,xn,X取每一個值 xi(i=1,2,......)的概率P(ξ=xi)=Pi,則稱表為離散型隨機變量X 的概率分布,簡稱分布列.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD的兩條對角線相交于點M(2,0),AB邊所在直線的方程為x-3y-6=0,點T(-1,1)在AD邊所在的直線上.

(1)求AD邊所在直線的方程;

(2)求矩形ABCD外接圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知n∈N* , Sn=(n+1)(n+2)…(n+n),
(Ⅰ)求 S1 , S2 , S3 , T1 , T2 , T3;
(Ⅱ)猜想Sn與Tn的關系,并用數(shù)學歸納法證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,正方體中,M,N,E,F(xiàn)分別是棱A1B1,A1D1,B1C1,C1D1的中點,求證:平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個圓柱形圓木的底面半徑為1 m,長為10 m,將此圓木沿軸所在的平面剖成兩部分.現(xiàn)要把其中一部分加工成直四棱柱木梁,長度保持不變,底面為等腰梯形ABCD如圖所示,其中O為圓心,C,D在半圓上,設,木梁的體積為V單位:m3,表面積為S單位:m2

1求V關于θ的函數(shù)表達式;

2的值,使體積V最大;

3問當木梁的體積V最大時,其表面積S是否也最大?請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】從6名男生和4名女生中任選4人參加比賽,設被選中女生的人數(shù)為隨機變量ξ,求:
(Ⅰ)ξ的分布列;
(Ⅱ)所選女生不少于2人的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在正方體中.

圖(1圖(2

(Ⅰ)如圖(1)求與平面所成的角

(Ⅱ)如圖(2)求證: ∥平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)fx= ,若f1-x=f1+x),且f0=3.

(Ⅰ)求b,c的值;

(Ⅱ)試比較m∈R)的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了緩解交通壓力,某省在兩個城市之間特修一條專用鐵路,用一列火車作為公共交通車.已知每日來回趟數(shù)y是每次拖掛車廂節(jié)數(shù)x的一次函數(shù),如果該列火車每次拖4節(jié)車廂,每日能來回16趟;如果每次拖6節(jié)車廂,則每日能來回10趟,火車每日每次拖掛車廂的節(jié)數(shù)是相同的,每節(jié)車廂滿載時能載客110人.

(1)求出y關于x的函數(shù);

(2)該火車滿載時每次拖掛多少節(jié)車廂才能使每日營運人數(shù)最多?并求出每天最多的營運人數(shù)?

查看答案和解析>>

同步練習冊答案