.經(jīng)過點M(1,1)作直線l交橢圓于A、B兩點,且M為AB的中點,則直線l方程為                       .
解:設(shè)點A,B的坐標(biāo),那么利用中點(1,1)是AB的中點,將A,B點代入橢圓中,點差法可知中點坐標(biāo)與直線斜率的關(guān)系式,進(jìn)而得到斜率為,這樣可知直線的方程為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

標(biāo)準(zhǔn)方程下的橢圓的短軸長為,焦點,右準(zhǔn)線軸相交于點,且,過點的直線和橢圓相交于點.
(1)求橢圓的方程和離心率;
(2)若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)已知橢圓E的長軸的一個端點是拋物線的焦點,離心率是
(1)求橢圓E的方程;
(2)過點C(—1,0),斜率為k的動直線與橢圓E相交于A、B兩點,請問x軸上是否存在點M,使為常數(shù)?若存在,求出點M的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

.(本小題滿分12分)已知橢圓的中心在原點,焦點在軸上,一個頂點為,且其右焦點到直線的距離為3.
(1)求橢圓的方程;
(2)是否存在斜率為 ,且過定點的直線,使與橢圓交于兩個不同的點、,且?若存在,求出直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的離心率為,直線:與以原點為圓心、以橢圓的短半軸長為半徑的圓相切.
(1)求橢圓的方程;
(2)設(shè)橢圓的左焦點為,右焦點,直線過點且垂直于橢圓的長軸,動直線
于點,線段垂直平分線交于點,求點的軌跡的方程;
(3)當(dāng)P不在軸上時,在曲線上是否存在兩個不同點C、D關(guān)于對稱,若存在,
求出的斜率范圍,若不存在,說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

過橢圓的右焦點作一條斜率為2的直線與橢圓交于A、B兩點,O為坐標(biāo)原點,則△OAB的面積為______________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

曲線在橫坐標(biāo)為的點處的切線為L,則點(3,2)到L的距離是
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

若橢圓C:上有一動點P,P到橢圓C的兩焦點 F1,F(xiàn)2的距離之和等于2,△PF1F2的面積最大值為1
(I)求橢圓的方程
(II)若過點M(2,0)的直線l與橢圓C交于不同兩點A、B,(O為坐標(biāo)原點)且| ,求實數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓的離心率是       (     )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案