直線y=kx+b與曲線y=x3+ax+1相切于點(2,3),則b的值為( )
A.-3
B.9
C.-15
D.-7
【答案】分析:先根據(jù)曲線y=x3+ax+1過點(2,3)求出a的值,然后求出x=2處的導數(shù)求出k的值,根據(jù)切線過點(2,3)求出b即可.
解答:解:∵y=x3+ax+1過點(2,3),
∴a=-3,∴y'=3x2-3,
∴k=y'|x=2=3×4-3=9,
∴b=y-kx=3-9×2=-15,
故選C.
點評:本題主要考查了利用導數(shù)研究曲線上某點切線方程,直線的斜率等有關基礎知識,考查運算求解能力,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•閔行區(qū)一模)設雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長為2
3
,漸近線方程是y=±
3
x
,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
OA
OB

(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:貴州省遵義四中2010屆高三畢業(yè)班第四次月考、文科數(shù)學試卷 題型:013

若直線y=kx與曲y=x3-3x2+2x相切,則k的值為

[  ]
A.

或2

B.

或-2

C.

2

D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

設雙曲線C:數(shù)學公式的虛軸長為2數(shù)學公式,漸近線方程是y=數(shù)學公式,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且數(shù)學公式
(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:2012年上海市閔行區(qū)高考數(shù)學一模試卷(文科)(解析版) 題型:解答題

設雙曲線C:的虛軸長為2,漸近線方程是y=,O為坐標原點,直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點,且
(1)求雙曲C的方程;
(2)求點P(k,m)的軌跡方程.

查看答案和解析>>

同步練習冊答案