設(shè)雙曲線C:的虛軸長(zhǎng)為2,漸近線方程是y=,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.
【答案】分析:(1)根據(jù)雙曲線虛軸長(zhǎng)為2,漸近線方程是y=,可得幾何量的值,即可求得雙曲線C的方程;
(2)直線AB:y=kx+m與雙曲線聯(lián)立消去y得(3-k2)x2-2kmx-m2-3=0,利用韋達(dá)定理及知x1x2+y1y2=0,即可求得點(diǎn)P的軌跡方程.
解答:解:(1)由題意,雙曲線虛軸長(zhǎng)為2,漸近線方程是y=,
∴b=,b=a,
∴a=1     (3分)
故雙曲線C的方程為.(6分)
(2)設(shè)A(x1,y1),B(x2,y2),直線AB:y=kx+m與雙曲線聯(lián)立消去y得(3-k2)x2-2kmx-m2-3=0
由題意3-k2≠0,且 (4分)
又由知x1x2+y1y2=0
而x1x2+y1y2=x1x2+k2x1x2+km(x1+x2)+m2
所以+k2×+km×+m2=0
化簡(jiǎn)得2m2-3k2=3①
由△>0可得k2<m2+3②
由①②可得2m2-3k2=3                  (6分)
故點(diǎn)P的軌跡方程是2y2-3x2=3(x≠±)        (8分)
點(diǎn)評(píng):本題考查雙曲線的標(biāo)準(zhǔn)方程,考查雙曲線的幾何性質(zhì),考查直線與雙曲線的位置關(guān)系,考查向量知識(shí)的運(yùn)用,解題的關(guān)鍵是直線與雙曲線方程聯(lián)立,利用韋達(dá)定理進(jìn)行求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•閔行區(qū)一模)設(shè)雙曲線C:
x2
a2
-
y2
b2
=1(a,b>0)
的虛軸長(zhǎng)為2
3
,漸近線方程是y=±
3
x
,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且
OA
OB

(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二第七學(xué)段文科數(shù)學(xué)試卷(解析版) 題型:選擇題

 設(shè)雙曲線的虛軸長(zhǎng)為2,焦距為,則雙曲線的漸近線

方程為(   )

A.       B.  

C.      D.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省實(shí)驗(yàn)學(xué)校高二下期中理科數(shù)學(xué)試卷A(解析版) 題型:選擇題

設(shè)雙曲線=1(a>0,b>0)的虛軸長(zhǎng)為2,焦距為2,則雙曲線的漸近線方程為 (    )

A、y=±x     B、y=±2x    C、y=±x     D、y=±x

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

設(shè)雙曲線C:數(shù)學(xué)公式的虛軸長(zhǎng)為2數(shù)學(xué)公式,漸近線方程是y=數(shù)學(xué)公式,O為坐標(biāo)原點(diǎn),直線y=kx+m(k,m∈R)與雙曲線C相交于A、B兩點(diǎn),且數(shù)學(xué)公式
(1)求雙曲C的方程;
(2)求點(diǎn)P(k,m)的軌跡方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案