.(12分)如圖,在四棱臺(tái)ABCD-A1B1C1D1中,下底ABCD是邊長為2的正方形,上底A1B1C1D1是邊長為1的正方形,側(cè)棱DD1⊥平面ABCD,DD1=2.
(1)求證:B1B∥平面D1AC;
(2)求證:平面D1AC⊥平面B1BDD1.
證明: (1)設(shè)AC∩BD=E,連結(jié)D1E,
∵平面ABCD∥平面A1B1C1D1.
∴B1D1∥BE,∵B1D1=BE=,
∴四邊形B1D1EB是平行四邊形,
所以B1B∥D1E.
又因?yàn)?i>B1B⊄平面D1AC,D1E⊂平面D1AC,
所以B1B∥平面D1AC ---------------------------------------6分
(2)證明:側(cè)棱DD1⊥平面ABCD,AC⊂平面ABCD,
∴AC⊥DD1.
∵下底ABCD是正方形,AC⊥BD.
∵DD1與DB是平面B1BDD1內(nèi)的兩條相交直線,
∴AC⊥平面B1BDD1
∵AC⊂平面D1AC,∴平面D1AC⊥平面B1BDD1.---------------------12分
【解析】略
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
(08年福建師大附中模擬)(本小題滿分12分)
如圖,在四棱錐中,底面是邊長為2的正方形,側(cè)面是正三角形,且平面平面,為棱的中點(diǎn)
(1)求證:平面;
(2)求二面角的大。
(3)求點(diǎn)到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013屆遼寧省分校高三12月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,在四棱錐中,底面是矩形,,、分別為線段、的中點(diǎn),⊥底面.
(Ⅰ)求證:∥平面;
(Ⅱ)求證:平面^平面;
(Ⅲ)若,求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河南省南陽市高三第八次周考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)如圖,在點(diǎn)上,過點(diǎn)做//將的位置(),
使得.
(I)求證: (II)試問:當(dāng)點(diǎn)上移動(dòng)時(shí),二面角的平面角的余弦值是否為定值?若是,求出定值,若不是,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆黑龍江省年高一下學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分)
如圖,在幾何體P-ABCD中,四邊形ABCD為矩形,PA⊥平面ABCD,AB=PA=2.
(1)當(dāng)AD=2時(shí),求證:平面PBD⊥平面PAC;
(2)若PC與AD所成角為45°,求幾何體P-ABCD的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年遼寧省丹東市四校協(xié)作體高三第二次聯(lián)合考試?yán)砜茢?shù)學(xué)卷 題型:解答題
(本小題滿分12分)
如圖,在三棱錐中,,,,,, 點(diǎn),分別在棱上,且,
(I)求證:平面;
(II)當(dāng)為的中點(diǎn)時(shí),求與平面所成的角的大;
(III)是否存在點(diǎn)使得二面角為直二面角?并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com