【題目】已知函數(shù),在處有最小值為0.

(1)求的值;

(2)設(shè),

①求的最值及取得最值時的取值;

②是否存在實數(shù),使關(guān)于的方程上恰有一個實數(shù)解?若存在,求出實數(shù)的取值范圍;若不存在,請說明理由.

【答案】(1);(2)

【解析】試題分析:(1)由二次函數(shù)的性質(zhì),得到頂點式求出的值;(2)令,利用復(fù)合函數(shù)的性質(zhì)得到的最值及對應(yīng)的的取值; ,整理得,利用二次函數(shù)的根的分布,因為恰有一個實數(shù)解,根據(jù)的性質(zhì),則有兩個相等的大于1的根或有兩個不相等的根, ,結(jié)合二次函數(shù)圖象寫出約束條件,解出答案。

試題解析:

(1),所以,得.

(2),①令,則, 遞減, 遞增,所以,此時, ,此時.

②令,則,即

,

方程有兩個相等的大于1的根,則,得;

方程有兩個根, ,則,得無解,

綜上所述,存在這樣的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,用K、A1、A2三類不同的元件連接成一個系統(tǒng).當(dāng)K正常工作且A1、A2至少有一個正常工作時,系統(tǒng)正常工作,已知KA1、A2正常工作的概率依次是0.9、0.80.8,則系統(tǒng)正常工作的概率為( )

A. 0.960 B. 0.864 C. 0.720 D. 0.576

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知設(shè)函數(shù)

(1)求 的定義域;

(2)判斷 的奇偶性并予以證明;

(3)求使 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)的定義域為,對任意實數(shù),都有.

(1)若, ,且,求, 的值;

(2)若為常數(shù),函數(shù)是奇函數(shù),

①驗證函數(shù)滿足題中的條件;

②若函數(shù)求函數(shù)的零點個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,建立平面直角坐標(biāo)系xOy,x軸在地平面上,y軸垂直于地平面,單位長度為1千米.某炮位于坐標(biāo)原點.已知炮彈發(fā)射后的軌跡在方程y=kx- (1+k2)x2(k>0)表示的曲線上,其中k與發(fā)射方向有關(guān).炮的射程是指炮彈落地點的橫坐標(biāo).

(1)求炮的最大射程;

(2)設(shè)在第一象限有一飛行物(忽略其大小),其飛行高度為3.2千米,試問它的橫坐標(biāo)a不超過多少時,炮彈可以擊中它?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了實現(xiàn)60萬元的生源利潤目標(biāo),準(zhǔn)備制定一個激勵招生人員的獎勵方案:在生源利潤達(dá)到5萬元時,按生源利潤進(jìn)行獎勵,且資金y(單位:萬元)隨生源利潤x(單位:萬元)的增加而增加,但資金總數(shù)不超過3萬元,同時獎金不超過利潤的20%.現(xiàn)有三個獎勵模型:y=0.2xy=log5x,y=1.02x,其中哪個模型符合該校的要求?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直三棱柱ABC-A1B1C1NAC上且CN=3AN,M,P,Q分別是AA1,A1B1BC的中點.求證直線PQ∥平面BMN.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在四棱錐中,,,,分別為的中點,.

(1)求證:平面平面;

(2)設(shè),若平面與平面所成銳二面角,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的一個焦點與拋物線的焦點重合,且點到直線的距離為, 的公共弦長為.

(1)求橢圓的方程及點的坐標(biāo);

(2)過點的直線交于兩點,與交于兩點,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案