【題目】如圖,四棱錐中,平面底面,且在底面正投影點(diǎn)在線段上,,.
(1)證明:;
(2)若,與所成角的余弦值為,求鈍二面角的余弦值.
【答案】(1)見解析;(2).
【解析】
試題(1)分析條件易得平面, ∵平面, ∴;
(2)作于點(diǎn),則底面, ,以為坐標(biāo)原點(diǎn),的方向分別為軸,軸,軸的正方向,建立空間直角坐標(biāo)系,分別求平面和平面的法向量,用向量求解即可.
試題解析:
(1)如圖,連接交于點(diǎn).∵,即為等腰三角形,又平分,故,∵平面底面, 平面底面,∴平面, ∵平面,
∴.
(2)作于點(diǎn),則底面, ,以為坐標(biāo)原點(diǎn),的方向分別為軸,軸,軸的正方向,建立空間直角坐標(biāo)系.,而,得,
又,故.
設(shè),則由,得,而,
由,得,則,
所以.
設(shè)平面的法向量為,平面的法向量為,
由得可取,
由得可取,
從而法向量的夾角的余弦值為.
由圖可知二面角是鈍角,故二面角的余弦值為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓E:的右焦點(diǎn)為,離心率為,過作與x軸垂直的直線與橢圓交于P,Q點(diǎn),若|PQ|=.
(1)求橢圓E的方程;
(2)設(shè)過的直線l的斜率存在且不為0,直線l交橢圓于A,B兩點(diǎn),若以AB為直徑的圓過橢圓左焦點(diǎn),求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】隨著支付寶、微信等支付方式的上線,越來越多的商業(yè)場景可以實(shí)現(xiàn)手機(jī)支付.為了解各年齡層的人使用手機(jī)支付的情況,隨機(jī)調(diào)查50次商業(yè)行為,并把調(diào)查結(jié)果制成下表:
年齡(歲) | [15,25) | [25,35) | [35,45) | [45,55) | [55,65) | [65,75) |
頻數(shù) | 5 | 10 | 15 | 10 | 5 | 5 |
手機(jī)支付 | 4 | 6 | 10 | 6 | 2 | 0 |
(1)若從年齡在 [55,65)的被調(diào)查者中隨機(jī)選取2人進(jìn)行調(diào)查,記選中的2人中使用手機(jī)支付的人數(shù)為,求的分布列及數(shù)學(xué)期望;
(2)把年齡在[15,45)稱為中青年,年齡在[45,75)稱為中老年,請根據(jù)上表完2×2列聯(lián)表,是否有以上的把握判斷使用手機(jī)支付與年齡(中青年、中老年)有關(guān)聯(lián)?
手機(jī)支付 | 未使用手機(jī)支付 | 總計(jì) | |
中青年 | |||
中老年 | |||
總計(jì) |
可能用到的公式:
獨(dú)立性檢驗(yàn)臨界值表:
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】用五種不同顏色(顏色可以不全用完)給三棱柱的六個(gè)頂點(diǎn)涂色,要求每個(gè)點(diǎn)涂一種顏色,且每條棱的兩個(gè)端點(diǎn)涂不同顏色,則不同的涂色種數(shù)有( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某市交通管理部門為了解市民對機(jī)動車“單雙號限行”的態(tài)度,隨機(jī)采訪了100名市民,將他們的意見和是否擁有私家車的情況進(jìn)行了統(tǒng)計(jì),得到了如下的列聯(lián)表:
贊同限行 | 不贊同限行 | 合計(jì) | |
沒有私家車 | 15 | ||
有私家車 | 45 | ||
合計(jì) | 100 |
已知在被采訪的100人中隨機(jī)抽取1人且抽到“贊同限行”者的概率是.
(1)請將上面的列聯(lián)表補(bǔ)充完整;
(2)根據(jù)上面的列聯(lián)表判斷能否在犯錯(cuò)誤的概率不超過0.10的前提下認(rèn)為“對限行的態(tài)度與是否擁有私家車有關(guān)”;
(3)將上述調(diào)查所得到的頻率視為概率.現(xiàn)在從該市大量市民中,采用隨機(jī)抽樣方法每次抽取1名市民,抽取3次,記被抽取的3名市民中的“贊同限行”人數(shù)為.若每次抽取的結(jié)果是相互獨(dú)立的,求的分布列、期望和方差.
附:參考公式:,其中.
臨界值表:
0.15 | 0.10 | 0.05 | 0.025 | 0.10 | 0.005 | 0.001 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】國家規(guī)定,疫苗在上市前必須經(jīng)過嚴(yán)格的檢測,并通過臨床實(shí)驗(yàn)獲得相關(guān)數(shù)據(jù),以保證疫苗使用的安全和有效.某生物制品硏究所將某一型號疫苗用在動物小白鼠身上進(jìn)行科研和臨床實(shí)驗(yàn),得到統(tǒng)計(jì)數(shù)據(jù)如下:
未感染病毒 | 感染病毒 | 總計(jì) | |
未注射疫苗 | 40 | p | x |
注射疫苗 | 60 | q | y |
總計(jì) | 100 | 100 | 200 |
現(xiàn)從未注射疫苗的小白鼠中任取1只,取到“感染病毒”的小白鼠的概率為.
(1)求列聯(lián)表中的數(shù)據(jù)p,q,,的值;
(2)能否有把握認(rèn)為注射此種疫苗有效?
(3)在感染病毒的小白鼠中,按未注射疫苗和注射疫苗的比例抽取5只進(jìn)行病例分析,然后從這五只小白鼠中隨機(jī)抽取3只對注射疫苗情況進(jìn)行核實(shí),求至少抽到2只為未注射疫苗的小白鼠的概率. 附:.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), , .
(1)若,且存在單調(diào)遞減區(qū)間,求實(shí)數(shù)的取值范圍;
(2)設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn), ,過線段的中點(diǎn)作軸的垂線分別交, 于點(diǎn), ,證明: 在點(diǎn)處的切線與在點(diǎn)處的切線不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從某食品廠生產(chǎn)的面包中抽取個(gè),測量這些面包的一項(xiàng)質(zhì)量指標(biāo)值,由測量結(jié)果得如下頻數(shù)分布表:
質(zhì)量指標(biāo)值分組 | |||||
頻數(shù) |
(1)在相應(yīng)位置上作出這些數(shù)據(jù)的頻率分布直方圖;
(2)估計(jì)這種面包質(zhì)量指標(biāo)值的平均數(shù)(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表);
(3)根據(jù)以上抽樣調(diào)查數(shù)據(jù),能否認(rèn)為該食品廠生產(chǎn)的這種面包符合“質(zhì)量指標(biāo)值不低于的面包至少要占全部面包的規(guī)定?”
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com