已知橢圓C:x2+=1,過(guò)點(diǎn)M(0,1)的直線l與橢圓C相交于兩點(diǎn)A、B.
(Ⅰ)若l與x軸相交于點(diǎn)P,且P為AM的中點(diǎn),求直線l的方程;
(Ⅱ)設(shè)點(diǎn)N(0,),求||的最大值.
【答案】分析:(Ⅰ)設(shè)A(x1,y1),因?yàn)镻為AM的中點(diǎn),且P的縱坐標(biāo)為0,M的縱坐標(biāo)為1,所以y1=-1,又因?yàn)辄c(diǎn)A(x1,y1)在橢圓C上,所以,由此能求出直線l的方程.
(Ⅱ)設(shè)A(x1,y1),B(x2,y2),則,,所以,則,由此進(jìn)行分類討論,能推導(dǎo)出當(dāng)直線AB的方程為x=0或y=1時(shí),有最大值1.
解答:(Ⅰ)解:設(shè)A(x1,y1),
因?yàn)镻為AM的中點(diǎn),且P的縱坐標(biāo)為0,M的縱坐標(biāo)為1,
所以,解得y1=-1,(1分)
又因?yàn)辄c(diǎn)A(x1,y1)在橢圓C上,
所以,即,解得,
則點(diǎn)A的坐標(biāo)為()或(-),
所以直線l的方程為,或
(Ⅱ)解:設(shè)A(x1,y1),B(x2,y2),
,
所以,

當(dāng)直線AB的斜率不存在時(shí),
其方程為x=0,A(0,2),B(0,-2),此時(shí);
當(dāng)直線AB的斜率存在時(shí),設(shè)其方程為y=kx+1,
由題設(shè)可得A、B的坐標(biāo)是方程組的解,
消去y得(4+k2)x2+2kx-3=0,
所以△=(2k)2+12(4+k2)>0,,
,
所以
=
當(dāng)k=0時(shí),等號(hào)成立,即此時(shí)取得最大值1.
綜上,當(dāng)直線AB的方程為x=0或y=1時(shí),有最大值1.
點(diǎn)評(píng):本題主要考查橢圓標(biāo)準(zhǔn)方程,簡(jiǎn)單幾何性質(zhì),直線與橢圓的位置關(guān)系.考查運(yùn)算求解能力,推理論證能力;考查化歸與轉(zhuǎn)化思想.解題時(shí)要認(rèn)真審題,仔細(xì)解答,注意分類討論思想的靈活運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)

(1)若橢圓的長(zhǎng)軸長(zhǎng)為4,離心率為
3
2
,求橢圓的標(biāo)準(zhǔn)方程;
(2)在(1)的條件下,設(shè)過(guò)定點(diǎn)M(0,2)的直線l與橢圓C交于不同的兩點(diǎn)A、B,且∠AOB為銳角(其中O為坐標(biāo)原點(diǎn)),求直線l的斜率k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,已知橢圓C:x2+
y2
a2
=1(a>1)的離心率為e,點(diǎn)F為其下焦點(diǎn),點(diǎn)A為其上頂點(diǎn),過(guò)F的直線l:y=mx-c(其中c=
a2-1
與橢圓C相交于P,Q兩點(diǎn),且滿足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)試用a表示m2;
(2)求e的最大值;
(3)若e∈(
1
3
1
2
),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊二模)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左頂點(diǎn)為A,右焦點(diǎn)為F,且過(guò)點(diǎn)(1,
3
2
),橢圓C的焦點(diǎn)與曲線2
x
2
 
-2
y
2
 
=1
的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點(diǎn),點(diǎn)M、N的縱坐標(biāo)分別為m、n.請(qǐng)問(wèn)以線段MN為直徑的圓是否經(jīng)過(guò)x軸上的定點(diǎn)?若存在,求出定點(diǎn)的坐標(biāo),并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.
(3)在(2)問(wèn)的條件下,求以線段MN為直徑的圓的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•棗莊二模)已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
的左頂點(diǎn)為A,右焦點(diǎn)為F,且過(guò)點(diǎn)(1,
3
2
),橢圓C的焦點(diǎn)與曲線2
x
2
 
-2
y
2
 
=1
的焦點(diǎn)重合.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)F任作橢圓C的一條弦PQ,直線AP、AQ分別交直線x=4于M、N兩點(diǎn),點(diǎn)M、N的縱坐標(biāo)分別為m、n.請(qǐng)問(wèn)以線段MN為直徑的圓是否經(jīng)過(guò)x軸上的定點(diǎn)?若存在,求出定意的坐標(biāo),并證明你的結(jié)論;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x
2
 
a
2
 
+
y
2
 
b
2
 
=1(a>b>0)
,F(xiàn)1、F2分別為橢圓c的左右焦點(diǎn),點(diǎn)P在橢圓C上(不是頂點(diǎn)),△PF1F2內(nèi)一點(diǎn)G滿足3
PG
=
PF1
+
PF2
,其中
OG
=(
1
9
a,
6
9
a)

(I)求橢圓C的離心率;
(Ⅱ)若橢圓C短軸長(zhǎng)為2
3
,過(guò)焦點(diǎn)F2的直線l與橢圓C相交于A、B兩點(diǎn)(A、B不是左右頂點(diǎn)),若
AF2
=2
F2B
,求△F1AB面積.

查看答案和解析>>

同步練習(xí)冊(cè)答案