如圖所示,已知橢圓C:x2+
y2
a2
=1(a>1)的離心率為e,點(diǎn)F為其下焦點(diǎn),點(diǎn)A為其上頂點(diǎn),過F的直線l:y=mx-c(其中c=
a2-1
與橢圓C相交于P,Q兩點(diǎn),且滿足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)試用a表示m2;
(2)求e的最大值;
(3)若e∈(
1
3
,
1
2
),求m的取值范圍.
分析:(1)直線方程與橢圓方程聯(lián)立,利用韋達(dá)定理,及向量的數(shù)量積公式,即可得出結(jié)論;
(2)利用(1)的結(jié)論,可得a2≥3c2,從而可得e的最大值;
(3)若e∈(
1
3
,
1
2
),可得
9
8
a2
4
3
,從而可求m的取值范圍.
解答:解:(1)直線方程與橢圓方程聯(lián)立,可得(a2+m2)x2-2mcx-1=0
設(shè)P(x1,y1)、Q(x2,y2),則x1+x2=
2mc
a2+m2
,x1x2=
-1
a2+m2

∴y1+y2=m(x1+x2)-2c=
-2a2c
a2+m2
,y1y2=
a2(c2-m2)
a2+m2

∵A(0,a),∴
AP
=(x1,y1-a),
AQ
=(x2,y2-a)
AP
AQ
=x1x2+(y1-a)(y2-a)=
a2(a+c)2-1
2-c2

∴a2+m2=2-c2=2-(a2-1)
∴m2=3-2a2;
(2)由(1)知,m2=3-2a2≥0
∴3(a2-c2)-2a2≥0
∴a2≥3c2
e2
1
3

∴e的最大值為
3
3

(3)∵e∈(
1
3
,
1
2
),
e2∈(
1
9
,
1
4
)

1
9
a2-1
a2
1
4

9
8
a2
4
3

1
3
m2
3
4

∴m的取值范圍為(-
3
2
,-
3
3
)∪(
3
3
,
3
2
)
點(diǎn)評:本題考查直線與橢圓的位置關(guān)系,考查橢圓的幾何性質(zhì),考查學(xué)生分析解決問題的能力,考查學(xué)生的計(jì)算能力,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文)如圖所示:已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
,F(xiàn)1、F2為其左、右焦點(diǎn),A為右頂點(diǎn),過F1的直線l與橢圓相交于P、Q兩點(diǎn),且有
1
|PF1|
+
1
|QF|
=2

(1)求橢圓長半軸長a的取值范圍;
(2)若
AP
AQ
=a2且a∈(
4
3
,
9
5
)
,求直線l的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖所示,已知橢圓C的離心率為
3
2
,A、B、F分別為橢圓的右頂點(diǎn)、上頂點(diǎn)、右焦點(diǎn),且S△ABF=1-
3
2

(1)求橢圓C的方程;
(2)已知直線l:y=kx+m被圓O:x2+y2=4所截弦長為2
3
,若直線l與橢圓C交于M、N兩點(diǎn).求△OMN面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,已知橢圓C:x2+
y2
a2
=1(a>1)的離心率為e,點(diǎn)F為其下焦點(diǎn),點(diǎn)A為其上頂點(diǎn),過F的直線l:y=mx-c(其中c=
a2-1
與橢圓C相交于P,Q兩點(diǎn),且滿足
AP
AQ
=
a2(a+c)2-1
2-c2

(1)試用a表示m2;
(2)求e的最大值;
(3)若e∈(
1
3
1
2
),求m的取值范圍.
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶市渝中區(qū)巴蜀中學(xué)高三(上)月考數(shù)學(xué)試卷(文理合卷)(解析版) 題型:解答題

(文)如圖所示:已知橢圓C:,F(xiàn)1、F2為其左、右焦點(diǎn),A為右頂點(diǎn),過F1的直線l與橢圓相交于P、Q兩點(diǎn),且有
(1)求橢圓長半軸長a的取值范圍;
(2)若,求直線l的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案