直角坐標(biāo)系中,以原點為極點,軸的正半軸為極軸建立極坐標(biāo)系,設(shè)點A,B分別在曲線為參數(shù))和曲線上,則的最小值為       

 

【答案】

【解析】曲線C1的普通方程為,曲線C2的普通方程為,由點到直線的距離公式可知,圓心C(3,0)到直線C2的距離為,

所以的最小值為.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•太原一模)在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建坐標(biāo)系,已知曲線C:ρsin2θ=2acosθ(a>0),已知過點P(-2,-4)的直線L的參數(shù)方程為:
x=-2+
2
2
t
y=-4+
2
2
t
,直線L與曲線C分別交于M,N.
(Ⅰ)寫出曲線C和直線L的普通方程;    
(Ⅱ)若|PM|,|MN|,|PN|成等比數(shù)列,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系中,以原點為極點,x軸正半軸為極軸建立極坐標(biāo)系,已知拋物線C的極坐標(biāo)方程為ρcos2θ=4sinθ(ρ≥0),直線l的參數(shù)方程為
x=
3
t
y=1+t
(t為參數(shù)),設(shè)直線l與拋物線C的兩交點為A、B,點F為拋物線C的焦點,則|AF|+|BF|=
16
3
16
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•武昌區(qū)模擬)(坐標(biāo)系與參數(shù)方程)在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建極坐標(biāo)系,兩種坐標(biāo)系取相同的單位長度.已知曲線C:psin2θ=2acosθ(a>0),過點P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
,直線l與曲線C分別交于M、N.若|PM|、|MN|、|PN|成等比數(shù)列,則實數(shù)a的值為
1
1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•漳州模擬)在平面直角坐標(biāo)系中,圓x2+y2=R2(R>0)上兩點A(x1,y1),B(x2,y2),若劣弧AB的長為L,則
L
R
等于
OA 
, 
OB
夾角的弧度數(shù),從而cos
L
R
=
x1x2+y1y2
R2
.在空間直角坐標(biāo)系中,以原點為球心,半徑為R的球面上兩點A(x1,y1,z1),B(x2,y2,z2),若A、B兩點間的球面距離為L,則cos
L
R
等于
x1x2+y1y2+z1z2
R2
x1x2+y1y2+z1z2
R2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,以原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,圓C的極坐標(biāo)方程為ρ=2(sinθ-cosθ),直線l的參數(shù)方程為:
x=2+t
y=-1+2t
(t為參數(shù)).
(1)寫出圓C和直線l的普通方程;
(2)點p為圓C上動點,求點P到直線l的距離的最小值.

查看答案和解析>>

同步練習(xí)冊答案