(2012•武昌區(qū)模擬)(坐標系與參數(shù)方程)在直角坐標系中,以原點為極點,x軸的正半軸為極軸建極坐標系,兩種坐標系取相同的單位長度.已知曲線C:psin2θ=2acosθ(a>0),過點P(-2,-4)的直線l的參數(shù)方程為
x=-2+
2
2
t
y=-4+
2
2
t
,直線l與曲線C分別交于M、N.若|PM|、|MN|、|PN|成等比數(shù)列,則實數(shù)a的值為
1
1
分析:把參數(shù)方程化為普通方程,把極坐標方程化為直角坐標方程,聯(lián)立方程組利用根與系數(shù)的關系求出x1+x2=4+2a,x1•x2=4.再根據(jù)由|PM|、|MN|、|PN|成等比數(shù)列可得
 2(x1-2)2=
2
|x1+2|•
2
|x2+2|,由此求得實數(shù)a的值.
解答:解:曲線C:psin2θ=2acosθ(a>0),即 ρ2sin2θ=2aρcosθ,即 y2=2ax. 直線l的參數(shù)方程
x=-2+
2
2
t
y=-4+
2
2
t
,即 x-y-2=0.
設M(x1,x1-2),N(x2,x2-2),則由
y2=2ax
x-y-2=0
可得 x2-(4+2a)x+4=0,∴x1+x2=4+2a,x1•x2=4.
由|PM|、|MN|、|PN|成等比數(shù)列,可得|MN|2=|PM||PN|.
∴2(x1-2)2=
(x1+2)2+(x2-2 +4)2
(x2+2)2+(x2-2 +4)2
,化簡可得  2(x1-2)2=
2
|x1+2|•
2
|x2+2|.
即 (x1+2)2-4x1•x2=|x1•x2+2(x1+x2)+4|,∴(4+2a)2-16=|4+2(4+2a)+4|,
解得 a=1,
故答案為 1.
點評:本題主要考查把參數(shù)方程化為普通方程的方法,把極坐標方程化為直角坐標方程的方法,直線和拋物線的位置關系的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)已知數(shù)列{an},{bn}滿足:a1=3,當n≥2時,an-1+an=4n;對于任意的正整數(shù)n,b1+2b2+…+2n-1bn=nan.設{bn}的前n項和為Sn
(Ⅰ)計算a2,a3,并求數(shù)列{an}的通項公式;
(Ⅱ)求滿足13<Sn<14的n的集合.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)在圓x2+y2=4上,與直線l:4x+3y-12=0的距離最小值是
2
5
2
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,PA=AD,AB=
2
AD,E是線段PD上的點,F(xiàn)是線段AB上的點,且
PE
ED
=
BF
FA
=λ(λ>0)

(Ⅰ)當λ=1時,證明DF⊥平面PAC;
(Ⅱ)是否存在實數(shù)λ,使異面直線EF與CD所成的角為60°?若存在,試求出λ的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)設fk(x)=si
n
2k
 
x+co
s
2k
 
x(x∈R)
,利用三角變換,估計fk(x)在k=l,2,3時的取值情況,對k∈N*時推測fk(x)的取值范圍是
1
2k-1
fk(x) ≤1
1
2k-1
fk(x) ≤1
(結果用k表示).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•武昌區(qū)模擬)2011年武漢電視臺問政直播節(jié)日首場內容是“讓交通更順暢”.A、B、C、D四個管理部門的負責人接受問政,分別負責問政A、B、C、D四個管理部門的現(xiàn)場市民代表(每一名代表只參加一個部門的問政)人數(shù)的條形圖如下.為了了解市民對武漢市實施“讓交通更順暢”幾個月來的評價,對每位現(xiàn)場市民都進行了問卷調查,然后用分層抽樣的方法從調查問卷中抽取20份進行統(tǒng)計,統(tǒng)計結果如下面表格所示:
滿意 一般 不滿意
A部門 50% 25% 25%
B部門 80% 0 20%
C部門 50% 50% 0
D部門 40% 20% 40%
(I)若市民甲選擇的是A部門,求甲的調查問卷被選中的概率;
(11)若想從調查問卷被選中且填寫不滿意的市民中再選出2人進行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.

查看答案和解析>>

同步練習冊答案