已知直線l經(jīng)過(guò)點(diǎn)(1,0)且一個(gè)方向向量d=(1,1).橢圓C:=1(m>1)的左焦點(diǎn)為F1.若直線l與橢圓C交于A,B兩點(diǎn),滿足·=0,求實(shí)數(shù)m的值.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

橢圓以雙曲線的實(shí)軸為短軸、虛軸為長(zhǎng)軸,且與拋物線交于兩點(diǎn).
(1)求橢圓的方程及線段的長(zhǎng);
(2)在圖像的公共區(qū)域內(nèi),是否存在一點(diǎn),使得的弦的弦相互垂直平分于點(diǎn)?若存在,求點(diǎn)坐標(biāo),若不存在,說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

拋物線y2=2px的準(zhǔn)線方程為x=-2,該拋物線上的每個(gè)點(diǎn)到準(zhǔn)線x=-2的距離都與到定點(diǎn)N的距離相等,圓N是以N為圓心,同時(shí)與直線l1:y=x和l2:y=-x相切的圓,
(1)求定點(diǎn)N的坐標(biāo);
(2)是否存在一條直線l同時(shí)滿足下列條件:
①l分別與直線l1和l2交于A、B兩點(diǎn),且AB中點(diǎn)為E(4,1);
②l被圓N截得的弦長(zhǎng)為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:=1(a>b>0),點(diǎn)A、B分別是橢圓C的左頂點(diǎn)和上頂點(diǎn),直線AB與圓G:x2+y2(c是橢圓的半焦距)相離,P是直線AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作圓G的兩切線,切點(diǎn)分別為M、N.

(1)若橢圓C經(jīng)過(guò)兩點(diǎn)、,求橢圓C的方程;
(2)當(dāng)c為定值時(shí),求證:直線MN經(jīng)過(guò)一定點(diǎn)E,并求·的值(O是坐標(biāo)原點(diǎn));
(3)若存在點(diǎn)P使得△PMN為正三角形,試求橢圓離心率的取值范圍..

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知雙曲線=1的離心率為2,焦點(diǎn)到漸近線的距離等于,過(guò)右焦點(diǎn)F2的直線l交雙曲線于A、B兩點(diǎn),F(xiàn)1為左焦點(diǎn).
(1)求雙曲線的方程;
(2)若△F1AB的面積等于6,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓=1(a>b>0),點(diǎn)P在橢圓上.
(1)求橢圓的離心率;
(2)設(shè)A為橢圓的左頂點(diǎn),O為坐標(biāo)原點(diǎn).若點(diǎn)Q在橢圓上且滿足AQ=AO,求直線OQ的斜率的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,已知橢圓=1(a>b>0),F(xiàn)1、F2分別為橢圓的左、右焦點(diǎn),A為橢圓的上頂點(diǎn),直線AF2交橢圓于另一點(diǎn)B.

(1)若∠F1AB=90°,求橢圓的離心率;
(2)若=2,·,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A為橢圓=1的右頂點(diǎn),點(diǎn)D(1,0),點(diǎn)P、B在橢圓上,.
 
(1) 求直線BD的方程;
(2) 求直線BD被過(guò)P、A、B三點(diǎn)的圓C截得的弦長(zhǎng);
(3) 是否存在分別以PB、PA為弦的兩個(gè)相外切的等圓?若存在,求出這兩個(gè)圓的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知橢圓C:+=1(a>b>0)的焦距為4,且過(guò)點(diǎn)P(,).
(1)求橢圓C的方程;
(2)設(shè)Q(x0,y0)(x0y0≠0)為橢圓C上一點(diǎn).過(guò)點(diǎn)Q作x軸的垂線,垂足為E.取點(diǎn)A(0,2),連接AE,過(guò)點(diǎn)A作AE的垂線交x軸于點(diǎn)D.點(diǎn)G是點(diǎn)D關(guān)于y軸的對(duì)稱點(diǎn),作直線QG,問(wèn)這樣作出的直線QG是否與橢圓C一定有唯一的公共點(diǎn)?并說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案