已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,動圓在圓C1內(nèi)部且和圓C1內(nèi)切,和圓C2相外切,求動圓圓心軌跡.

答案:
解析:

  解:設動圓圓心為P(x,y),半徑為r,連PC1,PC2

  則|PC1|=|13-r|,|PC2|=3+r,

  ∴|PC1|+|PC2|=16.

  由橢圓第一定義知:P點軌跡是

  以點C1、C2為焦點的橢圓,

  其中2c=8,2a=16,

  ∴b2=a2-c2=48,

  ∴動圓圓心的軌跡方程為:

  =1.


練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(1)求與橢圓
x2
25
+
y2
16
=1
共焦點的拋物線的標準方程.
(2)已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,動圓M與兩圓一個內(nèi)切,一個外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知兩圓C1:x 2+y2+4x-4y+4=0和圓C2x2+y2+2x=0
(1)求證:兩圓相交.
(2)求過點(-2,3),且過兩圓交點的圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:設計選修數(shù)學2-1蘇教版 蘇教版 題型:044

已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2.動圓M與兩圓都相切,求動圓圓心M的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:學習周報 數(shù)學 人教課標高二版(A選修1-1) 2009-2010學年 第17期 總第173期 人教課標版(A選修1-1) 題型:044

已知兩圓C1:(x-4)2+y2=169,C2:(x+4)2+y2=9,一動圓和圓C1相內(nèi)切,和圓C2相外切,求動圓圓心的軌跡方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)求與橢圓
x2
25
+
y2
16
=1
共焦點的拋物線的標準方程.
(2)已知兩圓C1:(x+4)2+y2=2,C2:(x-4)2+y2=2,動圓M與兩圓一個內(nèi)切,一個外切,求動圓圓心M的軌跡方程.

查看答案和解析>>

同步練習冊答案