數(shù)列數(shù)學(xué)公式,…的前n項(xiàng)的和為


  1. A.
    數(shù)學(xué)公式
  2. B.
    數(shù)學(xué)公式
  3. C.
    數(shù)學(xué)公式
  4. D.
    數(shù)學(xué)公式
B
分析:把數(shù)列,…分成一個(gè)等差數(shù)列和一個(gè)等比數(shù)列,然后根據(jù)等差數(shù)列和等比數(shù)列前n項(xiàng)和求和公式進(jìn)行解答.
解答:數(shù)列,…的通項(xiàng)公式為n+,
∴則該數(shù)列的前n項(xiàng)的和為1+2+3+…+n+++…+=,
故選B.
點(diǎn)評:本題主要考查數(shù)列求和的知識點(diǎn),解答本題的關(guān)鍵是求等差和等比數(shù)列前n項(xiàng)和,本題比較簡單.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}滿足a1=-1,an+1-2an-3=0數(shù)列{bn}滿足bn=log2(an+3).
(1)求{bn}的通項(xiàng)公式;
(2)若數(shù)列{2n+1bn}的前n項(xiàng)的和為sn,試比較sn與8n2-4n的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列an的前n項(xiàng)的和為Sn,a1=1,2Sn=(n+1)an+1-1
(1)求數(shù)列an的通項(xiàng)公式;
(3)求證:數(shù)列{2
2Sn
n
}
是等比數(shù)列;
(3)設(shè)數(shù)列bn是等比數(shù)列且b1=2,a1,a3,b2成等比數(shù)列,Tm為bn的前m項(xiàng)的和,Pm=(
4Sm
m
-3)•2m-1-1
,試比較Tm與Pm的大小,并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}中,a1=1,an+1=
an
2an+1
(n∈N).
(1)求數(shù)列{an}的通項(xiàng)公式an;
(2)設(shè):
2
bn
=
1
an
+1
 求數(shù)列{bnbn+1}的前n項(xiàng)的和Tn;
(3)已知P=(1+b1)(1+b3)(1+b5)…(1+b2n-1),求證:Pn>
2n+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

根據(jù)如圖所示的程序框圖,將輸出的x,y依次記為x1,x2,…x2011,y1,y2,…y2011
(1)求出數(shù)列{xn},{yn},的通項(xiàng)公式;
(2)求數(shù)列{xn+yn} 的前n項(xiàng)的和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}是等比數(shù)列,a2=2,a5=
1
4
,則數(shù)列{anan+1}的前n項(xiàng)的和為( 。

查看答案和解析>>

同步練習(xí)冊答案