精英家教網 > 高中數學 > 題目詳情
已知數列{an}滿足a1=-1,an+1-2an-3=0數列{bn}滿足bn=log2(an+3).
(1)求{bn}的通項公式;
(2)若數列{2n+1bn}的前n項的和為sn,試比較sn與8n2-4n的大。
分析:(1)由題意已知數列{an}滿足a1=-1,an+1-2an-3=0先求出數列an},在的有bn=log2(an+3)求出bn;
(2)有(1)可知數列2n+1bn通項公式,利用其通項公式選擇求其和的方法求,并于8n2-4n進行比較大。
解答:解:(1)由有an+1-2an-3=0,得:an+1+3=2(an+3),
∴an+3=(a1+3)2n-1=2n,
∴bn=log22n=n;
(2)∵Sn=1×22+2×23+3×24+…+n×2n+1
①×2得:2Sn=1×23+2×24+3×25+…+n×2n+2
①-②得:Sn=22+23+24+…+2n+1-n×2n+2=
4(1-2n)
1-2
-n×2n+2
,
∴Sn=4+(n-1)×2n+2,
∴Sn-(8n2-4n)=4+(n-1)×2n+2-8n2+4n=(n-1)2n+2-4(2n+1)(n-1)=4(n-1)[2n-(2n+1)]
當n=1時,Sn-(8n2-4n)=0,即Sn=8n2-4n;
當n=2時,Sn-(8n2-4n)=4×(22-5)=-4,即Sn<8n2-4n;
當n=3時,Sn-(8n2-4n)=4×2×(23-7)=8,即Sn>8n2-4n;
當n>3時,由指數函數的圖象知總有2n>(2n+1),
∴n>3時,有Sn>8n2-4n.
點評:此題考查已知數列的遞推關系利用因式分解求出數列的通項公式,還考查了利用做差法比較兩個因式的大。
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=1且an+1=
3+4an
12-4an
, n∈N*

(1)若數列{bn}滿足:bn=
1
an-
1
2
(n∈N*)
,試證明數列bn-1是等比數列;
(2)求數列{anbn}的前n項和Sn;
(3)數列{an-bn}是否存在最大項,如果存在求出,若不存在說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足
1
2
a1+
1
22
a2+
1
23
a3+…+
1
2n
an=2n+1
則{an}的通項公式
 

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足:a1=
3
2
,且an=
3nan-1
2an-1+n-1
(n≥2,n∈N*).
(1)求數列{an}的通項公式;
(2)證明:對于一切正整數n,不等式a1•a2•…an<2•n!

查看答案和解析>>

科目:高中數學 來源: 題型:

已知數列{an}滿足an+1=|an-1|(n∈N*
(1)若a1=
54
,求an
(2)若a1=a∈(k,k+1),(k∈N*),求{an}的前3k項的和S3k(用k,a表示)

查看答案和解析>>

科目:高中數學 來源: 題型:

(2012•北京模擬)已知數列{an}滿足an+1=an+2,且a1=1,那么它的通項公式an等于
2n-1
2n-1

查看答案和解析>>

同步練習冊答案