設(shè)函數(shù)f(x)=若f(a)>a,則實(shí)數(shù)a的取值范圍是    
【答案】分析:先根據(jù)分段函數(shù)的定義域選擇好解析式,分a≥0時(shí),和a<0時(shí)兩種情況求解,最后取并集.
解答:解:當(dāng)a≥0時(shí),,a>2,
矛盾,無解
當(dāng)a<0時(shí),,a<-1.
綜上:a<-1
∴實(shí)數(shù)a的取值范圍是(-∞,-1).
故答案為:(-∞,-1)
點(diǎn)評(píng):本題主要考查分段函數(shù),一元一次不等式,分式不等式的解法,還考查了分類討論思想和運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=p(x-
1
x
)-2lnx,g(x)=
2e
x
(p是實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù))
(1)若f(x)在其定義域內(nèi)為單調(diào)函數(shù),求p的取值范圍;
(2)若直線l與函數(shù)f(x),g(x)的圖象都相切,且與函數(shù)f(x)的圖象相切于點(diǎn)(1,0),求p的值;
(3)若在[1,e]上至少存在一點(diǎn)x0,使得f(x0)>g(x0)成立,求p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0),給出定義:設(shè)f′(x)是函數(shù)f(x)的導(dǎo)數(shù),f″(x)是函數(shù)f′(x)的導(dǎo)數(shù),f″(x)是函數(shù)f(x)的導(dǎo)數(shù),此時(shí),稱f″(x)為原函數(shù)f(x)的二階導(dǎo)數(shù).若二階導(dǎo)數(shù)所對(duì)應(yīng)的方程f''(x)=0有實(shí)數(shù)解x0,則稱點(diǎn)(x0,f(x0))為函數(shù)f(x)的“拐點(diǎn)”.某同學(xué)經(jīng)過探究發(fā)現(xiàn):任何一個(gè)三次函數(shù)都有“拐點(diǎn)”;任何一個(gè)三次函數(shù)都有對(duì)稱中心,且“拐點(diǎn)”就是對(duì)稱中心.
設(shè)三次函數(shù)f(x)=2x3-3x2-24x+12請(qǐng)你根據(jù)上面探究結(jié)果,解答以下問題:
①函數(shù)f(x)=2x3-3x2-24x+12的對(duì)稱中心坐標(biāo)為
(
1
2
,-
1
2
)
(
1
2
,-
1
2
)
;
②計(jì)算f(
1
2013
)+f(
2
2013
)+f(
3
2013
)+…+f(
2012
2013
)+f(
2013
2013
)
=
-1019
-1019

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對(duì)于函數(shù)f(x),若f(x0)=x0,則稱x0為f(x)的:“不動(dòng)點(diǎn)”;若f[f(x0)]=x0,則稱x0為f(x)的“穩(wěn)定點(diǎn)”.函數(shù)f(x)的“不動(dòng)點(diǎn)”和“穩(wěn)定點(diǎn)”的集合分別記為A和B,即A={x|f[f(x)]=x}.
(1)設(shè)函數(shù)f(x)=ax2+bx+c(a≠0),且A=∅,求證:B=∅;
(2)設(shè)函數(shù)f(x)=3x+4,求集合A和B,并分析能否根據(jù)(1)(2)中的結(jié)論判斷A=B恒成立?若能,請(qǐng)給出證明,若不能,請(qǐng)舉以反例.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案