已知函數(shù)f(x)=loga(x+1)(a>1),若函數(shù)y=g(x)的圖象上任意一點P關(guān)于原點的對稱點Q的軌跡恰好是函數(shù)f(x)的圖象.
(1)寫出函數(shù)g(x)的解析式;
(2)當(dāng)x∈[0,1)時,總有f(x)+g(x)≥m成立,求m的取值范圍.
【答案】
分析:(1)由已知條件可知函數(shù)g(x)的圖象上的任意一點P(x,y)關(guān)于原點對稱的點Q(-x,-y)在函數(shù)f(x)圖象上,把Q(-x,-y)代入f(x),整理可得g(x)
(2)由(1)可令h(x)=f(x)+g(x)
,先判斷函數(shù)h(x)在[0,1)的單調(diào)性,
進而求得函數(shù)的最小值h(x)
min,使得m≤h(x)
min解答:解:(1)設(shè)點P(x,y)是g(x)的圖象上的任意一點,則Q(-x,-y)在函數(shù)f(x)的圖象上,
即-y=log
a(-x+1),則
∴
(2)f(x)+g(x)≥m 即
,
也就是
在[0,1)上恒成立.
設(shè)
,
則
由函數(shù)的單調(diào)性易知,h(x)在[0,1)上遞增,若使f(x)+g(x)≥m在[0,1)上恒成立,
只需h(x)
min≥m在[0,1)上成立,即m≤0.
m的取值范圍是(-∞,0]
點評:本題(1)主要考查了函數(shù)的中心對稱問題:若函數(shù)y=f(x)與y=g(x)關(guān)于點M(a,b)對稱,則y=f(x)上的任意一點(x,y)關(guān)于M(a,b)對稱的點(2a-x,2b-y)在函數(shù)y=g(x)的圖象上.
(2)主要考查了函數(shù)的恒成立問題,往往轉(zhuǎn)化為求最值問題:m≥h(x)恒成立,則m≥h(x)
maxm≤h(x)恒成立,
則m≤h(x)
min