【題目】下圖是某算法的程序框圖,則程序運(yùn)行后輸出的結(jié)果是

【答案】3
【解析】解:第1次 ,滿足循環(huán),a=1,T=1,K=2,第2次滿足2<6;sin ,不成立,
執(zhí)行a=0,T=1,k=3,第3次有 ,不滿足條件循環(huán),
a=0,T=1,k=4,滿足 ,a=1,T=2,k=5,滿足k<6,
此時(shí) 成立,a=1,T=3,k=6,不滿足6<6,退出循環(huán),輸出結(jié)果T=3.
所以答案是:3.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用算法的循環(huán)結(jié)構(gòu)的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握在一些算法中,經(jīng)常會(huì)出現(xiàn)從某處開(kāi)始,按照一定條件,反復(fù)執(zhí)行某一處理步驟的情況,這就是循環(huán)結(jié)構(gòu),循環(huán)結(jié)構(gòu)可細(xì)分為兩類:當(dāng)型循環(huán)結(jié)構(gòu)和直到型循環(huán)結(jié)構(gòu).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠的某種產(chǎn)品成箱包裝,每箱200件,每一箱產(chǎn)品在交付用戶之前要對(duì)產(chǎn)品作檢驗(yàn),如檢驗(yàn)出不合格品,則更換為合格品檢驗(yàn)時(shí),先從這箱產(chǎn)品中任取20件作檢驗(yàn),再根據(jù)檢驗(yàn)結(jié)果決定是否對(duì)余下的所有產(chǎn)品作檢驗(yàn),設(shè)每件產(chǎn)品為不合格品的概率都為,且各件產(chǎn)品是否為不合格品相互獨(dú)立

(1)記20件產(chǎn)品中恰有2件不合格品的概率為,的最大值點(diǎn)

(2)現(xiàn)對(duì)一箱產(chǎn)品檢驗(yàn)了20件,結(jié)果恰有2件不合格品,以(1)中確定的作為的值已知每件產(chǎn)品的檢驗(yàn)費(fèi)用為2元,若有不合格品進(jìn)入用戶手中,則工廠要對(duì)每件不合格品支付25元的賠償費(fèi)用

(i)若不對(duì)該箱余下的產(chǎn)品作檢驗(yàn),這一箱產(chǎn)品的檢驗(yàn)費(fèi)用與賠償費(fèi)用的和記為,求;

(ii)以檢驗(yàn)費(fèi)用與賠償費(fèi)用和的期望值為決策依據(jù),是否該對(duì)這箱余下的所有產(chǎn)品作檢驗(yàn)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在充分競(jìng)爭(zhēng)的市場(chǎng)環(huán)境中,產(chǎn)品的定價(jià)至關(guān)重要,它將影響產(chǎn)品的銷量,進(jìn)而影響生產(chǎn)成本、品牌形象等某公司根據(jù)多年的市場(chǎng)經(jīng)驗(yàn),總結(jié)得到了其生產(chǎn)的產(chǎn)品A在一個(gè)銷售季度的銷量單位:萬(wàn)件與售價(jià)單位:元之間滿足函數(shù)關(guān)系,A的單件成本單位:元與銷量y之間滿足函數(shù)關(guān)系

當(dāng)產(chǎn)品A的售價(jià)在什么范圍內(nèi)時(shí),能使得其銷量不低于5萬(wàn)件?

當(dāng)產(chǎn)品A的售價(jià)為多少時(shí),總利潤(rùn)最大?注:總利潤(rùn)銷量售價(jià)單件成本

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】經(jīng)市場(chǎng)調(diào)查,新街口某新開(kāi)業(yè)的商場(chǎng)在過(guò)去一個(gè)月內(nèi)(以30天計(jì)),顧客人數(shù)(千人)與時(shí)間(天)的函數(shù)關(guān)系近似滿足),人均消費(fèi)(元)與時(shí)間(天)的函數(shù)關(guān)系近似滿足

(1)求該商場(chǎng)的日收益(千元)與時(shí)間(天)(, )的函數(shù)關(guān)系式;

(2)求該商場(chǎng)日收益的最小值(千元).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】2017年3月14日,“共享單車”終于來(lái)到蕪湖,共享單車又被親切稱作“小黃車”是全球第一個(gè)無(wú)樁共享單車平臺(tái),開(kāi)創(chuàng)了首個(gè)“單車共享”模式.相關(guān)部門準(zhǔn)備對(duì)該項(xiàng)目進(jìn)行考核,考核的硬性指標(biāo)是:市民對(duì)該項(xiàng)目的滿意指數(shù)不低于,否則該項(xiàng)目需進(jìn)行整改,該部門為了了解市民對(duì)該項(xiàng)目的滿意程度,隨機(jī)訪問(wèn)了使用共享單車的名市民,并根據(jù)這名市民對(duì)該項(xiàng)目滿意程度的評(píng)分(滿分分),繪制了如下頻率分布直方圖:

(I)為了了解部分市民對(duì)“共享單車”評(píng)分較低的原因,該部門從評(píng)分低于分的市民中隨機(jī)抽取人進(jìn)行座談,求這人評(píng)分恰好都在的概率;

(II)根據(jù)你所學(xué)的統(tǒng)計(jì)知識(shí),判斷該項(xiàng)目能否通過(guò)考核,并說(shuō)明理由.

(注:滿意指數(shù)=

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校100名學(xué)生期中考試語(yǔ)文成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].

(1)求圖中的值;

(2)根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生語(yǔ)文成績(jī)的平均分,眾數(shù),中位數(shù);

(3)若這100名學(xué)生語(yǔ)文成績(jī)某些分?jǐn)?shù)段的人數(shù)()與數(shù)學(xué)成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)()之比如下表所示,求數(shù)學(xué)成績(jī)?cè)赱50,90)之外的人數(shù).

分?jǐn)?shù)段

[50,60)

[60,70)

[70,80)

[80,90)

1:1

2:1

3:4

4:5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)在點(diǎn)處的切線與直線垂直.

(1)求函數(shù)的極值;

(2)若上恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+1(a,b為實(shí)數(shù)),設(shè),

(1)f(-1)=0,且對(duì)任意實(shí)數(shù)x均有f(x)0成立,F(x)的表達(dá)式;

(2)(1)的條件下,當(dāng)x[-2,2]時(shí),g(x)=f(x)-kx是單調(diào)函數(shù),求實(shí)數(shù)k的取值范圍;

(3)設(shè)mn<0,m+n>0,a>0,f(x)滿足f(-x)=f(x),試比較F(m)+F(n)的值與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知數(shù)列{an}的各項(xiàng)均為正數(shù),記A(n)=a1+a2+…+an , B(n)=a2+a3+…+an+1 , C(n)=a3+a4+…+an+2 , n=1,2,….
(1)若a1=1,a2=5,且對(duì)任意n∈N* , 三個(gè)數(shù)A(n),B(n),C(n)組成等差數(shù)列,求數(shù)列{an}的通項(xiàng)公式.
(2)證明:數(shù)列{an}是公比為q的等比數(shù)列的充分必要條件是:對(duì)任意n∈N* , 三個(gè)數(shù)A(n),B(n),C(n)組成公比為q的等比數(shù)列.

查看答案和解析>>

同步練習(xí)冊(cè)答案