已知|
a
|=2,|
b
|=3,
a
b
的夾角為θ,且tan(
π
4
+θ)=-2-
3
,求
a
b
與|
a
-
b
|的值.
考點(diǎn):平面向量數(shù)量積的運(yùn)算
專題:平面向量及應(yīng)用
分析:利用兩角和的正切公式可得tanθ,進(jìn)而得到cosθ,再利用數(shù)量積的定義及其運(yùn)算性質(zhì)即可得出.
解答: 解:∵tan(
π
4
+θ)=-2-
3
,∴-2-
3
=
1+tanθ
1-tanθ
,解得tanθ=
3
,
∵θ∈[0,π],∴θ=
π
3

cosθ=
1
2

a
b
=|
a
|
|
b
|cosθ=2×3×
1
2
=3.
∴|
a
-
b
|=
a
2
+
b
2
-2
a
b
=
22+32-2×3
=
7
點(diǎn)評(píng):本題考查了兩角和的正切公式、數(shù)量積的定義及其運(yùn)算性質(zhì),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若⊙O1:x2+y2=5與⊙O2:(x-m)2+y2=20(m∈R)相交于A、B兩點(diǎn),且兩圓在點(diǎn)A處的切線互相垂直,則線段AB的長(zhǎng)度是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足:a1=1,an+1=3an+4(n∈N*
(1)求證:數(shù)列{an+2}是等比數(shù)列;
(2)設(shè)bn=nan(n∈N*),求數(shù)列{bn}的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,A={x|2≤x<5},B={x|3≤x<7},求:
(1)(∁RA)∩(∁RB)  
(2)∁R(A∪B)
(3)(∁RA)∪(∁RB)  
(4)∁R(A∩B)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}的首項(xiàng)a1=
2
3
,an+1=
2an
an+1
,n=1,2,3,….
(Ⅰ)證明:數(shù)列{
1
an
-1}是等比數(shù)列;
(Ⅱ)求數(shù)列 {
n
an
}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在直角三角形ABC中,∠A=90°,BC=a,若長(zhǎng)為2a的線段PQ以點(diǎn)A為中點(diǎn),問(wèn)
PQ
BC
的夾角θ取何值時(shí),
BP
CQ
的值最大?并求出這個(gè)最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等差數(shù)列{an}中,記Sn是它的前n項(xiàng)和,若S2=16,S4=24,求數(shù)列{|an|}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,C島位于我南海A港口北偏東60方向,距A港口60
2
海里處,我海監(jiān)船從A港口出發(fā),自西向東航行至B處時(shí),接上級(jí)命令趕赴C島執(zhí)行任務(wù),此時(shí)C島在B處北偏西45°方向上,海監(jiān)船立刻改變航向以每小時(shí)60海里的速度沿BC行進(jìn),則從B處到達(dá)C島需要多少小時(shí)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,△ABC是圓O的內(nèi)接三角形,PA是圓O的切線,PB交AC于點(diǎn)E,交圓O于點(diǎn)D,已知PE=PA,∠ABC=60°,PD=1,BD=8.
(1)求證:∠AEP=60°;
(2)求BC.

查看答案和解析>>

同步練習(xí)冊(cè)答案