設(shè)函數(shù)f(x)=x3+bx2+4cx+d的圖象關(guān)于原點(diǎn)對(duì)稱,f(x)的圖象在點(diǎn)P(1,m)處的切線的斜率為-6,且當(dāng)x=2時(shí)f(x)有極值.

(1)求a、b、c、d的值;

(2)若x1、x2∈[-1,1],求證:︱f(x1)-f(x2)︱≤.

解;(1)∵y=f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,

∴由f(-x)=-f(x)恒成立有b=d=0.

則f(x)= x3+4cx,f′(x)=ax2+4c,又∵f(1)=-6,f(2)=0,

故a=2,b=0,c=-2,d=0.

(2)∵f(x)=x3-8x,

f′(x)=2x2-8=2(x-2)(x+2),

當(dāng)x∈[-1,1]時(shí), f(x)≤0,f(x)在\[-1,1]上遞減而x1∈[-1,1],

∴f(1)≤f(x2)≤f(-1),即-≤f(x1)≤,

∴|f(x1)|≤,同理可得|f(x2)|≤.

∴|f(x1)-f(x2)|≤|f(x1)|+|f(x2)|≤,故|f(x1)-f(x2)|≤.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-
92
x2+6x-a
,
(1)對(duì)于任意實(shí)數(shù)x,f′(x)≥m恒成立,求m的最大值;
(2)若方程f(x)=0有且僅有一個(gè)實(shí)根,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-(
12
)x-2
,則其零點(diǎn)所在區(qū)間為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-(
1
2
)x-2
,則其零點(diǎn)所在區(qū)間為(  )
A、(0,1)
B、(1,2)
C、(2,3)
D、(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=x3-tx+
t-1
2
,t∈R

(I)試討論函數(shù)f(x)在區(qū)間[0,1]上的單調(diào)性:
(II)求最小的實(shí)數(shù)h,使得對(duì)任意x∈[0,1]及任意實(shí)數(shù)t,f(x)+|
t-1
2
|+h≥0
恒成立.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=
x
3
 
-3a
x
2
 
+3bx
的圖象與直線12x+y-1=0相切于點(diǎn)(1,-11).
(I)求a,b的值;
(II)如果函數(shù)g(x)=f(x)+c有三個(gè)不同零點(diǎn),求c的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案