【題目】某乒乓球俱樂部派甲、乙、丙三名運動員參加某運動會的個人單打資格選拔賽,本次選拔賽只有出線和未出線兩種情況.若一個運動員出線記分,未出線記分.假設(shè)甲、乙、丙出線的概率分別為,他們出線與未出線是相互獨立的.
(1)求在這次選拔賽中,這三名運動員至少有一名出線的概率;
(2)記在這次選拔賽中,甲、乙、丙三名運動員所得分之和為隨機(jī)變量,求隨機(jī)變量的分布列和數(shù)學(xué)期望.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù), 為自然對數(shù)的底數(shù).
(I)若曲線在點處的切線平行于軸,求的值;
(II)求函數(shù)的極值;
(III)當(dāng)時,若直線與曲線沒有公共點,求的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),求解下列問題(1)求函數(shù)f(x)的定義域;(2)求f(﹣1),f(12)的值;.
(1)求函數(shù)f(x)的定義域;
(2)求f(﹣1),f(12)的值;
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,區(qū)間M=[a,b](a<b),集合N={y|y=f(x),x∈M},則使M=N成立的實數(shù)對(a,b)有( 。
A.1個
B.2個
C.3個
D.無數(shù)多個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4—4:坐標(biāo)系與參數(shù)方程
(Ⅰ)若圓x2+y2=4在伸縮變換 (λ>0)的作用下變成一個焦點在x軸上,且離心率為的橢圓,求λ的值;
(Ⅱ)在極坐標(biāo)系中,已知點A(2,0),點P在曲線C:ρ=上運動,求P、A兩點間的距離的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下面關(guān)于集合的表示正確的個數(shù)是( 。
①{2,3}≠{3,2}; ②{(x , y)|x+y=1}={y|x+y=1};
③{x|x>1}={y|y>1}; ④{x|x+y=1}={y|x+y=1}.
A.0
B.1
C.2
D.3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對于集合A={x|x=m2﹣n2 , m∈Z,n∈Z},因為16=52﹣32 , 所以16∈A,研究下列問題:
(1)1,2,3,4,5,6六個數(shù)中,哪些屬于A,哪些不屬于A,為什么?
(2)討論集合B={2,4,6,8,…,2n,…}中有哪些元素屬于A,試給出一個普通的結(jié)論,不必證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線l: (t為參數(shù)),以坐標(biāo)原點為極點,x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ=2.
(1)若點M的直角坐標(biāo)為(2, ),直線l與曲線C交于A、B兩點,求|MA|+|MB|的值;
(2)設(shè)曲線C經(jīng)過伸縮變換 得到曲線C′,求曲線C′的內(nèi)接矩形周長的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱錐S﹣ABC中,△ABC是邊長為2 的正三角形,平面SAC⊥平面ABC,SA=SC=2,M、N分別為AB、SB的中點.
(1)證明:AC⊥SB;
(2)求三棱錐B﹣CMN的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com