【題目】在每年的3月份,濮陽(yáng)市政府都會(huì)發(fā)動(dòng)市民參與到植樹(shù)綠化活動(dòng)中去林業(yè)管理部門(mén)為了保證樹(shù)苗的質(zhì)量都會(huì)在植樹(shù)前對(duì)樹(shù)苗進(jìn)行檢測(cè),現(xiàn)從甲、乙兩種樹(shù)苗中各抽測(cè)了株樹(shù)苗,量出它們的高度如下(單位:厘米),

甲:37,21,31,20,29,19,32,23,25,33;

乙:10,30,47,27,46,14,26,10,44,46.

(1)畫(huà)出兩組數(shù)據(jù)的莖葉圖并根據(jù)莖葉圖對(duì)甲、乙兩種樹(shù)苗的高度作比較,寫(xiě)出兩個(gè)統(tǒng)計(jì)結(jié)論;

(2)設(shè)抽測(cè)的株甲種樹(shù)苗高度平均值為,將這株樹(shù)苗的高度依次輸人,按程序框(如圖)進(jìn)行運(yùn)算,問(wèn)輸出的大小為多少?并說(shuō)明的統(tǒng)計(jì)學(xué)意義,

【答案】(1)見(jiàn)解析;(2)見(jiàn)解析

【解析】分析:(1)畫(huà)出莖葉圖,通過(guò)圖能判斷甲,乙兩種樹(shù)苗的平均高度、分散情況、中位數(shù)的值.

(2)直接利用均值與方差公式求解,說(shuō)明幾何意義即可.

詳解:(1)莖葉圖:

統(tǒng)計(jì)結(jié)論:(答案不唯一,任意兩個(gè)即可)

①甲種樹(shù)苗的平均高度小于乙種樹(shù)苗的平均高度;

②甲種樹(shù)苗比乙種樹(shù)苗長(zhǎng)得整齊;

③甲種樹(shù)苗的中位數(shù)為,乙種樹(shù)苗的中位數(shù)為;

④甲種樹(shù)苗的高度基本上是對(duì)稱(chēng)的,而且大多數(shù)集中在平均數(shù)附近,乙種樹(shù)苗的高度分布比較分散.

(2)根據(jù)十個(gè)數(shù)據(jù)求得:,

由框圖可求得

表示株甲種樹(shù)苗高度的方差.越小,表示長(zhǎng)得越整齊,值越大,表示長(zhǎng)得越參差不齊.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平直角坐標(biāo)系中,已知點(diǎn),

(1)在軸的正半軸上求一點(diǎn),使得以為直徑的圓過(guò)點(diǎn),并求該圓的方程;

(2)在(1)的條件下,點(diǎn)在線(xiàn)段內(nèi),且平分,試求點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC,AC6,cos B ,C .

(1)AB的長(zhǎng);

(2)cos 的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在四棱錐中,底面為菱形,側(cè)面為等邊三角形,且側(cè)面底面, , 分別為, 的中點(diǎn).

Ⅰ)求證: .

Ⅱ)求證:平面平面.

Ⅲ)側(cè)棱上是否存在點(diǎn),使得平面?若存在,求出的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系xOy中,已知橢圓 =l (a>b>0)的焦距為2,離心率為 ,橢圓的右頂點(diǎn)為A.

(1)求該橢圓的方程:
(2)過(guò)點(diǎn)D( ,﹣ )作直線(xiàn)PQ交橢圓于兩個(gè)不同點(diǎn)P,Q,求證:直線(xiàn)AP,AQ的
斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知兩定點(diǎn), 和一動(dòng)點(diǎn),給出下列結(jié)論:

①若,則點(diǎn)的軌跡是橢圓;

②若,則點(diǎn)的軌跡是雙曲線(xiàn);

③若,則點(diǎn)的軌跡是圓;

④若,則點(diǎn)的軌跡關(guān)于原點(diǎn)對(duì)稱(chēng);

⑤若直線(xiàn)斜率之積等于,則點(diǎn)的軌跡是橢圓(除長(zhǎng)軸兩端點(diǎn)).

其中正確的是__________(填序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)為實(shí)數(shù),函數(shù)

(1)若,求的取值范圍;

(2)討論的單調(diào)性;

(3)當(dāng)時(shí),討論在區(qū)間內(nèi)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知四棱錐中,四邊形是菱形, ,又平面,

點(diǎn)是棱的中點(diǎn), 在棱上,且.

(1)證明:平面平面

(2)若平面,求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊(cè)答案