4.等比數(shù)列{an}中,a4=2,a5=5,則lga1+lga2+…+lga8等于(  )
A.6B.4C.3D.5

分析 由等比數(shù)列{an}的性質(zhì)得出a4•a5=a1•a8=a2•a7=a3•a6,利用對數(shù)的運算性質(zhì)即可得出結(jié)論.

解答 解:由等比數(shù)列{an}的性質(zhì)可得,
10=a4•a5=a1•a8=a2•a7=a3•a6,
所以lga1+lga2+…+lga8=lg(a1•a2•…•a8)=lg104=4.
故選:B.

點評 本題考查了等比數(shù)列與對數(shù)的運算性質(zhì)問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f($\frac{4}{x+1}$)=2x2-3x,則f(2)等于( 。
A.0B.$-\frac{4}{3}$C.-1D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.若函數(shù)y=f(x)在R上單調(diào)遞減,且f(t2)-f(t)<0,求t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知定義在R上的函數(shù)f(x)滿足f(x)=$\left\{\begin{array}{l}{{x}^{2}+3,x∈(-1,0]}\\{3-{x}^{2},x∈(0,1]}\end{array}\right.$,且f(x)=f(x+2),g(x)=$\frac{3x-7}{x-2}$,則方程g(x)=f(x)-g(x)在區(qū)間[-3,7]上的所有零點之和為( 。
A.12B.11C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在數(shù)列{an}中,已知a1=$\frac{1}{3}$,an+1=$\frac{1}{3}$an-$\frac{2}{{3}^{n+1}}$,n∈N*,設(shè)Sn為{an}的前n項和.
(1)求證:數(shù)列{3nan}是等差數(shù)列;
(2)求Sn;
(3)是否存在正整數(shù)p,q,r(p<q<r),使Sp,Sq,Sr成等差數(shù)列?若存在,求出p,q,r的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知偶函數(shù)y=f(x)是定義域為R,當(dāng)x≥0時,$f(x)=\left\{\begin{array}{l}3sin\frac{π}{2}x,0≤x≤1\\{2^{2-x}}+1,x>1\end{array}\right.$.函數(shù)g(x)=x2-2ax+a2-1(a∈R).若函數(shù)y=g(f(x))有且僅有6個零點,則實數(shù)a的取值范圍為( 。
A.(1,2]B.(1,2)C.(2,3]D.(2,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在△ABC中,P為BC中點,若(sinC)$\overrightarrow{AC}$+(sinA)$\overrightarrow{PA}$+(sinB)$\overrightarrow{PB}$=$\overrightarrow{0}$,則△ABC的形狀為( 。
A.直角三角形B.鈍角三角形C.等邊三角形D.等腰直角三角形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知數(shù)列{an}的各項均為正數(shù),觀察程序框圖,若k=5,k=10時,分別有S=$\frac{5}{11}$和S=$\frac{10}{21}$
(1)試求數(shù)列{an}的通項;
(2)令bn=2an,求b1+b2+…+b2015的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=2x+a,g(x)=$\frac{1}{{{2^{|x|}}}}$+2.
(1)求函數(shù)g(x)的值域;
(2)若a=0,求滿足方程f(x)-g(x)=0的x的值.
(3)?x0∈[1,2],f(x)+g(x)≥0成立,求a的范圍.

查看答案和解析>>

同步練習(xí)冊答案