分析 (1)由2|x|≥1,可得$\frac{1}{{{2^{|x|}}}}$∈(0,1],進(jìn)而得到函數(shù)g(x)的值域;
(2)若a=0,則方程f(x)-g(x)=0可化為:2x=$\frac{1}{{{2^{|x|}}}}$+2,解得答案;
(3)若?x0∈[1,2],f(x)+g(x)≥0成立,則f(x)+g(x)的最大值不小于0,進(jìn)而可得a的范圍.
解答 解:(1)∵2|x|≥1,
∴$\frac{1}{{{2^{|x|}}}}$∈(0,1],
∴g(x)=$\frac{1}{{{2^{|x|}}}}$+2∈(2,3],
故函數(shù)g(x)=$\frac{1}{{{2^{|x|}}}}$+2的值域?yàn)椋?,3];
(2)若a=0,則方程f(x)-g(x)=0可化為:2x=$\frac{1}{{{2^{|x|}}}}$+2,
由(1)得:方程的根在區(qū)間(1,log23]上,
故方程可化為:2x=$\frac{1}{{2}^{x}}$+2,即:(2x)2-2$\overline{•}$2x-1=0,
解得:2x=$\sqrt{2}$+1,
x=${log}_{2}(\sqrt{2}+1)$;
(3)令F(x)=f(x)+g(x)=2x+a+$\frac{1}{{{2^{|x|}}}}$+2.
當(dāng)x∈[1,2]時(shí),F(xiàn)(x)=2x+$\frac{1}{{2}^{x}}$+a+2;
由對(duì)勾函數(shù)的圖象和性質(zhì)可得:當(dāng)x=2時(shí),F(xiàn)(x)取最大值a+$\frac{25}{4}$,
若?x0∈[1,2],f(x)+g(x)≥0成立,
則a+$\frac{25}{4}$≥0,
即a≥-$\frac{25}{4}$.
點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是函數(shù)的最值,函數(shù)的值域,方程的根與函數(shù)的零點(diǎn),難度中檔.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 6 | B. | 4 | C. | 3 | D. | 5 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {1,2,3} | B. | {1,2} | C. | {1,3} | D. | {2,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $({\frac{1}{15},\frac{1}{6}}]$ | B. | $({\frac{1}{15},\frac{1}{4}}]$ | C. | $({\frac{1}{6},\frac{1}{4}}]$ | D. | $({\frac{1}{4},\frac{5}{18}}]$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2$\sqrt{2}$ | B. | 4$\sqrt{2}$ | C. | 6$\sqrt{2}$ | D. | 8$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 3 | B. | 6 | C. | 4$\sqrt{2}$ | D. | 3+2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{5π}{12}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com