A. | y=2[x+$\frac{1}{2}}$]+4 | B. | y=2[x+$\frac{1}{2}}$]+5 | C. | y=2[x-$\frac{1}{2}}$]+4 | D. | y=2[x-$\frac{1}{2}}$]+5 |
分析 根據(jù)已知中的收費標(biāo)準,求當(dāng)x>3時,所收費用y的表達式,化簡可得答案.
解答 解:由已知中,超過3千米的里程按每千米2元收費(對于其中不足千米的部分,若其小于0.5千米則不收費,若其大于或等于0.5千米則按1千米收費);
當(dāng)車程超過3千米時,另收燃油附加費1元.
可得:當(dāng)x>3時,所收費用y=10+[x-3+$\frac{1}{2}$]×2+1=2[x+$\frac{1}{2}$]+5,
故選:B.
點評 本題考查的知識點是分段函數(shù)的應(yīng)用,函數(shù)模型的選擇與應(yīng)用,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | 3 | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{80}{3}$ | B. | $\frac{1}{2}$ | C. | 2 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | $\sqrt{5}$ | C. | 4$\sqrt{2}$ | D. | $\sqrt{31}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{{x}^{2}}{25}$-$\frac{{y}^{2}}{16}$=1 | B. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{25}$=1 | C. | $\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1 | D. | $\frac{{x}^{2}}{9}$-$\frac{{y}^{2}}{16}$=1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{{\sqrt{5}+3}}{2}$ | C. | $\frac{{\sqrt{5}+1}}{2}$ | D. | $\frac{5}{2}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com