【題目】已知函數(shù).

1)證明:當(dāng)時(shí),上是增函數(shù);

2)是否存在實(shí)數(shù),只有唯一正數(shù),對(duì)任意正數(shù),使不等式恒成立?若存在,求出這樣的;若不存在,請(qǐng)說明理由.

【答案】(1)詳見解析;(2)存在實(shí)數(shù),只有唯一值,符合題意.

【解析】

1)將上是增函數(shù)轉(zhuǎn)化為上恒成立,構(gòu)造新函數(shù)利用導(dǎo)數(shù)求最值即可證明.

2)將恒成立轉(zhuǎn)化為恒成立,利用導(dǎo)數(shù)研究其單調(diào)性及最值,找到符合題意的正數(shù)的值.

證明:(1

,因此是增函數(shù)

,因此是增函數(shù)

2)取,可知,

①當(dāng)時(shí),可得遞減,是遞增

因?yàn)榇嬖谖ㄒ坏恼龜?shù),使得

故只能

上遞減,在上遞增

,此時(shí)只有唯一值

②當(dāng)時(shí),為增函數(shù),,故

當(dāng)時(shí),滿足不唯一

當(dāng)時(shí),滿足只能

時(shí)滿足

因此時(shí),值不唯一

故存在實(shí)數(shù),只有唯一值,

當(dāng)時(shí)恒有

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)拋物線C的焦點(diǎn)為F,經(jīng)過點(diǎn)F的直線與拋物線交于AB兩點(diǎn).

(1),求線段中點(diǎn)M的軌跡方程;

(2)若直線AB的方向向量為,當(dāng)焦點(diǎn)為時(shí),求的面積;

(3)M是拋物線C準(zhǔn)線上的點(diǎn),求證:直線的斜率成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)是定義在上的函數(shù),若存在,使得單調(diào)遞增,在上單調(diào)遞減,則稱上的單峰函數(shù),為峰點(diǎn),包含峰點(diǎn)的區(qū)間稱為含峰區(qū)間,其含峰區(qū)間的長(zhǎng)度為:

(1)判斷下列函數(shù)中,哪些是“上的單峰函數(shù)”?若是,指出峰點(diǎn);若不是,說出原因;;

(2)若函數(shù)上的單峰函數(shù),求實(shí)數(shù)的取值范圍;

(3)若函數(shù)是區(qū)間上的單峰函數(shù),證明:對(duì)于任意的,若,則為含峰區(qū)間;若,則為含峰區(qū)間;試問當(dāng)滿足何種條件時(shí),所確定的含峰區(qū)間的長(zhǎng)度不大于0.6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),給出以下四個(gè)命題,其中真命題的序號(hào)是_______.

時(shí),單調(diào)遞減且沒有最值;

②方程一定有解;

③如果方程有解,則解的個(gè)數(shù)一定是偶數(shù);

是偶函數(shù)且有最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角梯形中,,點(diǎn)中點(diǎn),且,現(xiàn)將三角形沿折起,使點(diǎn)到達(dá)點(diǎn)的位置,且與平面所成的角為.

(1)求證:平面平面;

(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本題滿分14分)本題共有2個(gè)小題,第1小題滿分6分,第2小題滿分8.

有時(shí)可用函數(shù)

描述學(xué)習(xí)某學(xué)科知識(shí)的掌握程度,其中x表示某學(xué)科知識(shí)的學(xué)習(xí)次數(shù)(),表示對(duì)該學(xué)科知識(shí)的掌握程度,正實(shí)數(shù)a與學(xué)科知識(shí)有關(guān).

1) 證明:當(dāng)時(shí),掌握程度的增加量總是下降;

2) 根據(jù)經(jīng)驗(yàn),學(xué)科甲、乙、丙對(duì)應(yīng)的a的取值區(qū)間分別為,,

.當(dāng)學(xué)習(xí)某學(xué)科知識(shí)6次時(shí),掌握程度是85%,請(qǐng)確定相應(yīng)的學(xué)科.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司在迎新年晚會(huì)上舉行抽獎(jiǎng)活動(dòng),有甲、乙兩個(gè)抽獎(jiǎng)方案供員工選擇;

方案甲:?jiǎn)T工最多有兩次抽獎(jiǎng)機(jī)會(huì),每次抽獎(jiǎng)的中獎(jiǎng)率為.第一次抽獎(jiǎng),若未中獎(jiǎng),則抽獎(jiǎng)結(jié)束.若中獎(jiǎng),則通過拋一枚質(zhì)地均勻的硬幣,決定是否繼續(xù)進(jìn)行第二次抽獎(jiǎng),規(guī)定:若拋出硬幣,反面朝上,員工則獲得500元獎(jiǎng)金,不進(jìn)行第二次抽獎(jiǎng);若正面朝上,員工則須進(jìn)行第二次抽獎(jiǎng),且在第二次抽獎(jiǎng)中,若中獎(jiǎng),獲得獎(jiǎng)金1000元;若未中獎(jiǎng),則所獲獎(jiǎng)金為0元.

方案乙:?jiǎn)T工連續(xù)三次抽獎(jiǎng),每次中獎(jiǎng)率均為,每次中獎(jiǎng)均可獲獎(jiǎng)金400元.

(1)求某員工選擇方案甲進(jìn)行抽獎(jiǎng)所獲獎(jiǎng)金(元)的分布列;

(2)某員工選擇方案乙與選擇方案甲進(jìn)行抽獎(jiǎng),試比較哪個(gè)方案更劃算?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面為直角梯形,,,平面

1)求異面直線所成角的大;

2)求二面角的余弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案