【題目】如果函數(shù)y=f(x)的定義域為R,對于定義域內(nèi)的任意x,存在實數(shù)a使得f=f(x+a)=f(﹣x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”;
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”,試寫出所有a的值;若不具有“P(a)性質(zhì)”,請說明理由;
(2)已知y=f(x)具有“P(0)性質(zhì)”,當x≤0時,f(x)=(x+t)2 , t∈R,求y=f(x)在[0,1]上的最大值;
(3)設(shè)函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當﹣ ≤x≤ 時,g(x)=|x|,求:當x∈R時,函數(shù)g(x)的解析式,若y=g(x)與y=mx(m∈R)交點個數(shù)為1001個,求m的值.

【答案】
(1)解:由sin(x+a)=sin(﹣x)得sin(x+a)=﹣sinx,

根據(jù)誘導公式得a=2kπ+π(k∈Z).

∴y=sinx具有“P(a)性質(zhì)”,其中a=2kπ+π(k∈Z)


(2)解:∵y=f(x)具有“P(0)性質(zhì)”,

∴f(x)=f(﹣x).

設(shè)x≥0,則﹣x≤0,∴f(x)=f(﹣x)=(﹣x+t)2=(x﹣t)2

∴f(x)=

當t≤0時,∵y=f(x)在[0,1]遞增,

∴x=1時ymax=(1﹣t)2,

當0<t< 時,y=f(x)在[0,t]上遞減,在[t,1]上遞增,且f(0)=t2<f(1)=(1﹣t)2,

∴x=1時ymax=(1﹣t)2

當t≥ 時,

∵y=f(x)在[0,m]上遞減,在[m,1]上遞增,且f(0)=m2≥f(1)=(1﹣m)2,

∴x=0時,ymax=t2,

綜上所述:當t< 時,ymax=f(1)=(1﹣t)2,

當t≥ ymax=f(0)=t2


(3)解:∵y=g(x)具有“P(±1)性質(zhì)”,

∴g(1+x)=g(﹣x),g(﹣1+x)=g(﹣x),

∴g(x+2)=g(1+1+x)=g(﹣1﹣x)=g(x),從而得到y(tǒng)=g(x)是以2為周期的函數(shù).

≤x≤ 設(shè),則﹣ ≤x﹣1≤ ,

g(x)=g(x﹣2)=g(﹣1+x﹣1)=g(﹣x+1)=|﹣x+1|=|x﹣1|=g(x﹣1).

再設(shè)n﹣ ≤x≤n+ (n∈z),

當n=2k(k∈z),則2k﹣ ≤x≤2k+ ,則﹣ ≤x﹣2k≤ ,

g(x)=g(x﹣2k)=|x﹣2k|=|x﹣n|;

當n=2k+1(k∈z),則2k+1﹣ ≤x≤2k+1+ ,則 ≤x﹣2k≤

g(x)=g(x﹣2k)=|x﹣2k﹣1|=|x﹣n|;

∴g(x)=

∴對于n﹣ ≤x≤n+ ,(n∈z),都有g(shù)(x)=|x﹣n|,而n+1﹣ <x+1<n+1+ ,

∴g(x+1)=|(x+1)﹣(n+1)|=|x﹣n|=g(x),

∴y=g(x)是周期為1的函數(shù).

①當m>0時,要使y=mx與y=g(x)有1001個交點,只要y=mx與y=g(x)在[0,500)有1000個交點,而在[500,501]有一個交點.

∴y=mx過( , ),從而得m=

②當m<0時,同理可得m=﹣

③當m=0時,不合題意.

綜上所述m=±


【解析】(1)根據(jù)題意先檢驗sin(x+a)=sin(﹣x)是否成立即可檢驗y=sinx是否具有“P(a)性質(zhì)”(2)由y=f(x)具有“P(0)性質(zhì)可得f(x)=f(﹣x),結(jié)合x≤0時的函數(shù)解析式可求x≥0的函數(shù)解析式,結(jié)合t的范圍判斷函數(shù)y=f(x)在[0,1]上的單調(diào)性即可求解函數(shù)的最值(3)由題意可得g(1+x)=g(﹣x),g(﹣1+x)=g(﹣x),據(jù)此遞推關(guān)系可推斷函數(shù)y=g(x)的周期,根據(jù)交點周期性出現(xiàn)的規(guī)律即可求解滿足條件的m,以及g(x)的解析式

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知公差不為0的等差數(shù)列的前三項和為6,且成等比數(shù)列

1)求數(shù)列的通項公式;

2)設(shè),數(shù)列的前項和為,求使的最大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

已知圓的參數(shù)方程為為參數(shù)),若是圓軸正半軸的交點,以坐標原點為極點,以軸正半軸為極軸,建立極坐標系,設(shè)過點的圓的切線為.

(1)求直線的極坐標方程;

(2)求圓上到直線的距離最大的點的直角坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合A={x|2≤x≤8},B={x|1<x<6},C={x|x>a},U=R.

(1)求A∪B,(CUA)∩B;

(2)若A∩C≠,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}的前n項和記為Sn且滿足Sn=2an﹣1,n∈N*;
(1)求數(shù)列{an}的通項公式;
(2)設(shè)Tn=a1a2﹣a2a3+a3a4﹣a4a5+…+(﹣1)n+1anan+1 , 求{Tn}的通項公式;
(3)設(shè)有m項的數(shù)列{bn}是連續(xù)的正整數(shù)數(shù)列,并且滿足:lg2+lg(1+ )+lg(1+ )+…+lg(1+ )=lg(log2am).
問數(shù)列{bn}最多有幾項?并求出這些項的和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知f(x)是定義在區(qū)間(0,+∞)內(nèi)的單調(diào)函數(shù),且對x∈(0,∞),都有f[f(x)﹣lnx]=e+1,設(shè)f′(x)為f(x)的導函數(shù),則函數(shù)g(x)=f(x)﹣f′(x)的零點個數(shù)為(
A.0
B.1
C.2
D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C: (a>b>0)的短軸長為2,過上頂點E和右焦點F的直線與圓M:x2+y2﹣4x﹣2y+4=0相切.
(Ⅰ)求橢圓C的標準方程;
(Ⅱ)若直線l過點(1,0),且與橢圓C交于點A,B,則在x軸上是否存在一點T(t,0)(t≠0),使得不論直線l的斜率如何變化,總有∠OTA=∠OTB (其中O為坐標原點),若存在,求出 t的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】點M(3,2)到拋物線C:y=ax2(a>0)準線的距離為4,F(xiàn)為拋物線的焦點,點N(l,l),當點P在直線l:x﹣y=2上運動時, 的最小值為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知平面直角坐標系xOy中,以O(shè)為極點,x軸的非負半軸為極軸建立極坐標系,P點的極坐標為(3, ).曲線C的參數(shù)方程為ρ=2cos(θ﹣ )(θ為參數(shù)).
(Ⅰ)寫出點P的直角坐標及曲線C的直角坐標方程;
(Ⅱ)若Q為曲線C上的動點,求PQ的中點M到直線l:2ρcosθ+4ρsinθ= 的距離的最小值.

查看答案和解析>>

同步練習冊答案