在△ABC,角A、B、C所對的邊分別是a、b、c,且a2+b2=c2-ab
(1)求角C的大小;
(2)若cosA=,求sinB的值.
【答案】分析:(1)結(jié)合題意直接利用余弦定理求出角C的余弦值,然后求出C的大;
(2)結(jié)合(1)推出A+B的值,通過cosA=,求出sinA的值,利用sinBsin()兩角差的正弦函數(shù)展開即可求出所求表達式的值.
解答:解:(1)因為a2+b2=c2-ab
所以cosC==-,
又C∈(0,π),
∴C=;
(2)由(1)得A+B=,∵cosA=,
∴sinA==,
∴sinB=sin()=sincosA-cossinA=
所以sinB=
點評:本題主要考查三角形的邊角關系、同角三角函數(shù)基本關系,兩角和與差的三角函數(shù)等基礎知識,考查運算求解能力,化歸與轉(zhuǎn)化思想.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知f(x)=2sinx(cosx-sinx),其中x∈R
(1)求函數(shù)f(x)的最小正周期,并從下列的變換中選擇一組合適變換的序號,經(jīng)過這組變換的排序,可以把函數(shù)y=sin2x的圖象變成y=f(x)的圖象;(要求變換的先后順序)
①縱坐標不變,橫坐標變?yōu)樵瓉淼?span id="9fqvqh0" class="MathJye">
1
2
倍,
②縱坐標不變,橫坐標變?yōu)樵瓉淼?倍,
③橫坐標不變,縱坐標變?yōu)樵瓉淼?span id="zkfkkln" class="MathJye">
2
倍,
④橫坐標不變,縱坐標變?yōu)樵瓉淼?span id="gzjs0nu" class="MathJye">
2
2
倍,
⑤向上平移一個單位,⑥向下平移一個單位,
⑦向左平移
π
4
個單位,⑧向右平移
π
4
個單位,
⑨向左平移
π
8
個單位,⑩向右平移
π
8
個單位,
(2)在△ABC中角A,B,C對應邊分別為a,b,c,f(A)=0,b=4,S△ABC=6,求a的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在△ABC中角A,B,C所對的邊長分別為a,b,c,且sinAcosC+
12
sinC=sinB

(Ⅰ)求角A的大;
 (Ⅱ)若a=2,求△ABC周長的最大值及相應的b,c值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•綿陽二模)已知向量
m
=(cosωx,sinωx),
n
=(cosωx,2
3
cosωx-sinωx)(x∈R,ω>0)函數(shù)f(x)=|
m
|+
m
n
且最小正周期為π,
(1)求函數(shù),f(x)的最大值,并寫出相應的x的取值集合;
(2)在△ABC中角A,B,C所對的邊分別為a,b,c且f(B)=2,c=3,S△ABC=6
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•江西模擬)已知函數(shù)f(x)=(
3
sinωx+cosωx)cosωx-
1
2
,(ω>0)的最小正周期為4π.
(1)若函數(shù)y=g(x)與y=f(x)的圖象關于直線x=π對稱,求y=g(x)的單調(diào)遞增區(qū)間.
(2)在△ABC中角A,B,C,的對邊分別是a,b,c滿足(2a-c)cosB=b•cosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2010•莆田模擬)在△ABC,角A、B、C所對的邊分別是a、b、c,且a2+b2=c2-ab
(1)求角C的大小;
(2)若cosA=
3
3
,求sinB的值.

查看答案和解析>>

同步練習冊答案